首页> 外文OA文献 >Leaf image classification with shape context and SIFT descriptors
【2h】

Leaf image classification with shape context and SIFT descriptors

机译:具有形状上下文和SIFT描述符的叶片图像分类

摘要

Nowadays leaf image classification is very useful for both botanists and ordinary users since advanced imaging devices such as smart phones make it ever easier to capture leaf images for various tasks such as retrieval and classification. Most of existing approaches mainly utilize global shape features. In this paper, we propose to improve leaf image classification by taking both global features and local features into account. As one of the most effective shape features, shape context is utilized as global feature. And SIFT (Scale Invariant Feature Transform) descriptors that have been successfully utilized for object recognition and image classification are selected as local features. Finally, weighted K-NN algorithm is utilized for classification. Experimental results on the large ICL dataset demonstrate that the proposed method outperforms the state-of-the-art.
机译:如今,叶子图像分类对于植物学家和普通用户都非常有用,因为诸如智能手机之类的先进成像设备使捕获诸如各种检索和分类任务的叶子图像变得更加容易。大多数现有方法主要利用整体形状特征。在本文中,我们建议通过同时考虑全局特征和局部特征来改善叶片图像分类。作为最有效的形状特征之一,形状上下文被用作全局特征。选择成功用于对象识别和图像分类的SIFT(尺度不变特征变换)描述符作为局部特征。最后,采用加权K-NN算法进行分类。在大型ICL数据集上的实验结果表明,所提出的方法优于最新技术。

著录项

  • 作者

    Wang Z; Lu B; Chi Z; Feng D;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号