首页> 外文OA文献 >Learning, Evolution, and Bayesian Estimation in Games and Dynamic Choice Models
【2h】

Learning, Evolution, and Bayesian Estimation in Games and Dynamic Choice Models

机译:游戏和动态选择模型中的学习,演化和贝叶斯估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This dissertation explores the modeling and estimation of learning in strategic and individual choice settings. While learning has been extensively used in economics, I introduce the concept into standard models in unorthodox ways. In each case, changing the perspective of what learning is drastically changes standard models. Estimation proceeds using advanced Bayesian techniques which perform very well in simulated data.The first chapter proposes a framework called Experienced-Based Ability (EBA) in which players increase the payoffs of a particular strategy in the future through using the strategy today. This framework is then introduced into a model of differentiated duopoly in which firms can utilize price or quantity contracts, and I explore how the resulting equilibrium is affected by changes in model parameters. The second chapter extends the EBA model into an evolutionary setting. This new model offers a simple and intuitive way to theoretically explain complicated dynamics. Moreover, this chapter demonstrates how to estimate posterior distributions of the model's parameters using a particle filter and Metropolis-Hastings algorithm, a technique that can also be used in estimating standard evolutionary models. This allows researchers to recover estimates of unobserved fitness and skill across time while only observing population share data. The third chapter investigates individual learning in a dynamic discrete choice setting. This chapter relaxes the assumption that individuals base decisions off an optimal policy and investigates the importance of policy learning. Q-learning is proposed as a model of individual choice when optimal policies are unknown, and I demonstrate how it can be used in the estimation of dynamic discrete choice (DDC) models. Using Bayesian Markov chain Monte Carlo techniques on simulated data, I show that the Q-learning model performs well at recovering true parameter values and thus functions as an alternative structural DDC model for researchers who want to move away from the rationality assumption. In addition, the simulated data are used to illustrate possible issues with standard structural estimation if the rationality assumption is incorrect. Lastly, using marginal likelihood analysis, I demonstrate that the Q-learning model can be used to test for the significance of learning effects if this is a concern.
机译:本文探讨了战略和个人选择环境下学习的建模和估计。虽然学习已在经济学中广泛使用,但我以非正统的方式将这一概念引入标准模型中。在每种情况下,改变学习内容的观点都会大大改变标准模型。使用高级贝叶斯技术进行估算,该技术在模拟数据中表现非常出色。第一章提出了一个称为“基于经验的能力”(EBA)的框架,在该框架中,参与者可以通过使用今天的策略来增加特定策略的收益。然后将此框架引入差异化双寡头模型中,企业可以利用该模型来利用价格或数量合同,并且我探索模型参数的变化如何影响最终的均衡。第二章将EBA模型扩展到一个演化环境。这个新模型提供了一种简单直观的方法来从理论上解释复杂的动力学。此外,本章还演示了如何使用粒子过滤器和Metropolis-Hastings算法来估计模型参数的后验分布,该技术也可以用于估计标准演化模型。这样一来,研究人员就可以在仅观察人口共享数据的情况下,恢复跨时间未观察到的体能和技能的估计值。第三章研究了动态离散选择环境下的个体学习。本章放宽了个人根据最佳政策制定决策的假设,并研究了政策学习的重要性。 Q学习被建议为当最优策略未知时的个人选择模型,我演示了如何将其用于动态离散选择(DDC)模型的估计。使用贝叶斯马尔可夫链蒙特卡洛技术对模拟数据进行分析,我证明了Q学习模型在恢复真实参数值方面表现良好,因此对于想要摆脱合理性假设的研究人员而言,它可作为替代结构DDC模型。此外,如果合理性假设不正确,则使用模拟数据来说明标准结构估计的可能问题。最后,使用边际似然分析,我证明了Q学习模型可以用来测试学习效果的重要性。

著录项

  • 作者

    Monte Calvo Alexander;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号