首页> 外文OA文献 >Circuit and Behavioral Analysis of Klinotaxis in Caenorhabditis elegans
【2h】

Circuit and Behavioral Analysis of Klinotaxis in Caenorhabditis elegans

机译:秀丽隐杆线虫的滑触回路和行为分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The nervous system is a complex organ that functions in most metazoans to sense and respond to a constantly changing world. How the nervous system does this is a major focus of systems-level neuroscience. This dissertation investigates the neural basis of the sensorimotor transformation underlying a spatial orientation strategy in the nematode Caenorhabditis elegans. Motile organisms rely on spatial orientation strategies to navigate to environments that are conducive to organismal fitness and comfort, e.g. environments with the correct temperature, light level, or access to food and mates. As such, spatial orientation strategies as a class represent a key behavior common to most forms of life on earth. To explore the behavioral mechanism used by C. elegans for spatial orientation, we designed and manufactured a microfluidic device that breaks the feedback loop between self-motion and environmental change by partially restraining the animal. The device takes advantage of laminar flow at small scale to provide distinct environments across the dorsoventral undulation that constitutes locomotion in this animal without using a physical barrier. This device allowed us to conclude that worms use the change in chemical concentration sensed between lateral extremes of the locomotion cycle to direct forward locomotion toward a favorable stimulus, an orientation strategy termed klinotaxis. We then investigated the neuronal basis of this behavior using laser ablation, calcium imaging, and optogenetic stimulation. We found a minimal neuronal network for klinotaxis to sodium chloride including the ASE, AIY, AIZ, and SMB neuron classes that displays left/right asymmetry across the sensory neuron, interneuron, and motor neuron levels. We extended these results by ablating other neurons that have been implicated in klinotaxis in other studies. Finally, we imaged the ASE neurons during klinotaxis in microfluidic device and found that these neurons are active on the timescale of individual head swings. Additionally, we found anecdotal evidence that photostimulation of ASE neurons expressing the light sensitive ion channel Channel Rhodopsin (CHR2) is sufficient to stimulate klinotaxis behavior. This dissertation includes previously published co-authored material.
机译:神经系统是一个复杂的器官,在大多数后生动物中起作用,以感知不断变化的世界并对之做出反应。神经系统如何做到这一点是系统级神经科学的主要重点。本文研究了线虫秀丽隐杆线虫空间定向策略下感觉运动转换的神经基础。运动有机体依靠空间定向策略来导航到有利于有机体适应和舒适的环境,例如具有正确温度,光照水平或接触食物和伴侣的环境。因此,空间定向策略作为一类代表了地球上大多数生命形式共有的关键行为。为了探索秀丽隐杆线虫用于空间定向的行为机制,我们设计并制造了一种微流体装置,该装置通过部分约束动物来打破自我运动与环境变化之间的反馈回路。该设备利用小规模的层流优势,在不使用物理屏障的情况下,在背腹波动中提供了独特的环境,从而构成了该动物的运动。该设备使我们可以得出结论,蠕虫利用在运动周期的横向极端之间感测到的化学浓度变化,将正向运动引向有利的刺激,这种取向策略称为打滑。然后,我们使用激光消融,钙成像和光遗传学刺激研究了这种行为的神经元基础。我们发现了一个最小的神经元网络,可以使氯化钠发生滑行,包括ASE,AIY,AIZ和SMB神经元类,这些神经元类在感觉神经元,中间神经元和运动神经元水平上显示左右不对称性。我们通过消融在其他研究中涉及滑吻的其他神经元扩展了这些结果。最后,我们在微流控装置中在气枢轴连接过程中对ASE神经元进行了成像,发现这些神经元在单个头部摆动的时间尺度上是活跃的。此外,我们发现轶事证据表明,表达光敏感离子通道通道视紫红质(CHR2)的ASE神经元的光刺激足以刺激关节弯曲行为。本论文包括以前发表的合著材料。

著录项

  • 作者

    McCormick Kathryn;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号