首页> 外文学位 >Regulation of neural circuits for oxygen-dependent behaviors in Caenorhabditis elegans.
【24h】

Regulation of neural circuits for oxygen-dependent behaviors in Caenorhabditis elegans.

机译:秀丽隐杆线虫的氧依赖性行为的神经回路调节。

获取原文
获取原文并翻译 | 示例

摘要

Behavior, an organism's ability to sense and respond to its environment, is paramount to its survival in nature. In multicellular animals, behavior is generated by the nervous system. Innate genetic programs form neural circuits that are sensitive to the environment and experience.; To understand the function of the nervous system at a systems level, I have chosen the soil nematode Caenorhabditis elegans as a model animal. In this dissertation, I describe neural circuits underlying C. elegans behaviors towards an important sensory cue, oxygen, using a genetic and neuroanatomical approach.; In the absence of bacterial food, wild-type adult hermaphrodites of the N2 strain prefer 7-14% oxygen in a linear 0-21% oxygen gradient, avoiding higher and lower oxygen levels. In Chapter 2, I define a chemosensory circuit for hyperoxia avoidance (>14% oxygen) and its regulation by food. In N2 animals, hyperoxia avoidance is mediated by two groups of neurons that express soluble guanylate cyclase homologs and two groups of neurons that express TRPV channels. The presence of bacterial food suppresses hyperoxia avoidance of N2 animals. This modulation is regulated by NPR-1 neuropeptide signaling, the DAF-7 (TGF-beta) transcriptional pathway, and serotonin in distinct groups of neurons. The distributed nature of this chemosensory circuit resembles dynamic modulated networks from more complex nervous systems.; In Chapter 3, I describe effects of a transcriptional oxygen-sensing pathway on hyperoxia avoidance behavior of C. elegans. The hypoxia-inducible factor-1 (HIF-1) pathway is a conserved transcriptional pathway for oxygen homeostasis in metazoa. Upregulation of HIF-1 signaling alters the chemosensory circuit for hyperoxia avoidance in C. elegans and suppresses food regulation.; In Chapter 4, I show that hypoxia avoidance (avoidance of 4% oxygen) requires signaling through the TAX-4/TAX-2 cyclic nucleotide-gated channel in sensory neurons and normal regulation of the HIF-1 pathway, and appears genetically distinct from hyperoxia avoidance. These preliminary results suggest that C. elegans behaviors can be used to identify additional acute sensors of oxygen.
机译:行为是生物体感知和响应其环境的能力,对于其在自然界的生存至关重要。在多细胞动物中,行为是由神经系统产生的。先天遗传程序形成对环境和经验敏感的神经回路。为了从系统角度了解神经系统的功能,我选择了土壤线虫秀丽隐杆线虫作为模型动物。在本文中,我使用遗传和神经解剖学方法描述了秀丽隐杆线虫对重要的感觉线索氧气的潜在神经回路行为。在没有细菌食物的情况下,N2菌株的野生型成年雌雄同体在线性0-21%的氧气梯度中更喜欢7-14%的氧气,避免了越来越高的氧气含量。在第二章中,我定义了一种避免高氧(> 14%的氧气)的化学感应电路,并通过食物对其进行调节。在N2动物中,高氧回避是由表达可溶性鸟苷酸环化酶同源物的两组神经元和表达TRPV通道的两组神经元介导的。细菌性食物的存在抑制了N2动物避免高氧血症。 NPR-1神经肽信号转导,DAF-7(TGF-beta)转录途径和5-羟色胺在不同的神经元组中调节这种调节。化学感应电路的分布式性质类似于来自更复杂的神经系统的动态调制网络。在第三章中,我描述了转录氧传感途径对秀丽隐杆线虫高氧避免行为的影响。缺氧诱导因子-1(HIF-1)途径是后生动物体内氧稳态的保守转录途径。 HIF-1信号的上调改变了秀丽隐杆线虫避免高氧反应的化学感觉回路,并抑制了食物调节。在第4章中,我证明了避免缺氧(避免缺氧<4%)需要通过感觉神经元中的TAX-4 / TAX-2环状核苷酸门控通道和HIF-1途径的正常调节来进行信号传导,并且在遗传学上似乎是不同的从高氧避免。这些初步结果表明,秀丽隐杆线虫的行为可用于识别其他急性氧气传感器。

著录项

  • 作者

    Chang, Andy J.;

  • 作者单位

    University of California, San Francisco.;

  • 授予单位 University of California, San Francisco.;
  • 学科 Biology Neuroscience.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 203 p.
  • 总页数 203
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 神经科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号