首页> 外文OA文献 >Angular rate estimation for multi-body spacecraft attitude control
【2h】

Angular rate estimation for multi-body spacecraft attitude control

机译:多体航天器姿态控制的角速率估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Spacecraft with high performance attitude control systems requirements have traditionally relied on imperfect mechanical gyroscopes for primary attitude determination. Gyro bias errors are corrected with a Kalman filter algorithm that uses updates from precise attitude sensors like star trackers. Gyroscopes, however, have a tendency to degrade or fail on orbit, becoming a life limiting factor for many satellites. When errors become erratic, pointing accuracy may be lost during short star gaps. Unpredictable gyro degradations have impacted NASA spacecraft missions such as Skylab and Hubble Space Telescope as well as several DoD and ESA satellites. An alternative source of angular rate information is a software implemented real time dynamic model. Inputs to the model from internal sensors and known spacecraft parameters enable the tracking of total system angular momentum from which body rates can be determined. With this technique, the Kalman filter algorithm provides error corrections to the dynamic model. The accuracy of internal sensors and input parameters determine the effectiveness of this angular rate estimation technique. This thesis presents the background for understanding and implementation of this technique into a representative attitude determination system. The system is incorporated into an attitude simulation model developed in SIMULINK to evaluate the effects of dynamic modeling errors and sensor inaccuracies. Results are presented that indicate that real time dynamic modeling is an effective method of angular rate determination for maneuvering multi-body spacecraft attitude control systems.
机译:具有高性能姿态控制系统要求的航天器传统上依靠不完善的机械陀螺仪来确定主要姿态。陀螺仪偏差误差通过卡尔曼滤波算法进行校正,该算法使用来自恒星跟踪器等精确姿态传感器的更新。然而,陀螺仪有在轨道上退化或失效的趋势,成为许多卫星的寿命限制因素。当误差变得不稳定时,可能会在短的星形间隙期间失去指向精度。不可预测的陀螺仪退化影响了NASA航天器的飞行任务,例如Skylab和Hubble太空望远镜以及一些DoD和ESA卫星。角速率信息的替代来源是软件实现的实时动态模型。来自内部传感器和已知航天器参数的模型输入可以跟踪总系统角动量,从而可以确定机体速率。通过这种技术,卡尔曼滤波器算法为动态模型提供了误差校正。内部传感器的精度和输入参数决定了这种角速率估计技术的有效性。本文为理解和实现该技术成为代表性的姿态确定系统提供了背景。该系统被整合到在SIMULINK中开发的姿态模拟模型中,以评估动态建模误差和传感器误差的影响。结果表明,实时动态建模是操纵多体航天器姿态控制系统的角速率确定的有效方法。

著录项

  • 作者

    Palermo William J.;

  • 作者单位
  • 年度 2001
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号