首页> 外文OA文献 >Simultaneous estimation of large numbers of extreme quantiles in simulation experiments
【2h】

Simultaneous estimation of large numbers of extreme quantiles in simulation experiments

机译:在仿真实验中同时估计大量的极端分位数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The large random access memory and high internal speeds of present day computers can be used to increase the efficiency of large-scale simulation experiments by estimating simultaneously several quantiles of each of several statistics. In order to do this without inordinately increasing programming complexity, quantile estimation schemes are required which are simple and do not depend on special features of the distributions of the statistics considered. The author discusses limitations, when the probability level alpha is very high or very low, of two basic methods of estimating quantiles. One method is the direct use of order statistics; the other is based on the use of stochastic approximation. Several modifications of these two estimation schemes are considered. In particular a simple and computationally efficient transformation of the simulation data is proposed and the properties (i.e. bias and variance) of quantile estimates based on this scheme are discussed
机译:通过同时估算多个统计数据中每个统计数据的分位数,可以使用当今计算机的大型随机存取存储器和较高的内部速度来提高大规模仿真实验的效率。为了在不过度增加编程复杂度的情况下做到这一点,需要分位数估计方案,该方案简单且不依赖于所考虑的统计分布的特殊特征。作者讨论了当概率水平alpha非常高或非常低时,估计分位数的两种基本方法的局限性。一种方法是直接使用订单统计信息。另一种是基于随机近似的使用。考虑了这两种估计方案的几种修改。特别是,提出了一种简单且计算有效的模拟数据转换,并讨论了基于该方案的分位数估计的属性(即偏差和方差)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号