首页> 外文OA文献 >Hand gesture recognition for human computer interaction : a comparative study of different image features
【2h】

Hand gesture recognition for human computer interaction : a comparative study of different image features

机译:人机交互的手势识别:不同图像特征的比较研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hand gesture recognition for human computer interaction, being anatural way of human computer interaction, is an area of active research incomputer vision and machine learning. This is an area with many different possibleapplications, giving users a simpler and more natural way to communicatewith robots/systems interfaces, without the need for extra devices. So, the primarygoal of gesture recognition research is to create systems, which can identifyspecific human gestures and use them to convey information or for devicecontrol. For that, vision-based hand gesture interfaces require fast and extremelyrobust hand detection, and gesture recognition in real time. In this studywe try to identify hand features that, isolated, respond better in various situationsin human-computer interaction. The extracted features are used to train aset of classifiers with the help of RapidMiner in order to find the best learner. Adataset with our own gesture vocabulary consisted of 10 gestures, recordedfrom 20 users was created for later processing. Experimental results show thatthe radial signature and the centroid distance are the features that when usedseparately obtain better results, with an accuracy of 91% and 90,1% respectivelyobtained with a Neural Network classifier. These to methods have alsothe advantage of being simple in terms of computational complexity, whichmake them good candidates for real-time hand gesture recognition.
机译:作为人机交互的自然方式,人机交互的手势识别是计算机视觉和机器学习中活跃的研究领域。这个领域具有许多不同的可能应用程序,从而为用户提供了一种与机器人/系统接口进行通信的更简单,更自然的方式,而无需额外的设备。因此,手势识别研究的主要目标是创建系统,该系统可以识别特定的人类手势并将其用于传达信息或用于设备控制。为此,基于视觉的手势界面需要快速且极其强大的手势检测和实时手势识别。在本研究中,我们尝试确定孤立的手部特征,这些特征在人机交互的各种情况下都能更好地响应。所提取的特征用于在RapidMiner的帮助下训练一组分类器,以找到最佳的学习者。具有我们自己的手势词汇的数据集由10个手势组成,从20个用户那里记录下来,供以后处理。实验结果表明,径向特征和质心距离是分别使用时可获得较好结果的特征,神经网络分类器的准确度分别为91%和90,1%。这些方法还具有在计算复杂度方面简单的优点,这使其成为实时手势识别的良好候选者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号