首页> 外文OA文献 >On observational learning of hierarchies in sequential tasks: a dynamic neural field model
【2h】

On observational learning of hierarchies in sequential tasks: a dynamic neural field model

机译:关于顺序任务中层次结构的观察学习:动态神经场模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many of the tasks we perform during our everyday lives are achieved through sequential execution of a set of goal-directed actions. Quite often these actions are organized hierarchically, corresponding to a nested set of goals and subgoals. Several computational models address the hierarchical execution of goal directed actions by humans. However, the neural learning mechanisms supporting the temporal clustering of goal-directed actions in a hierarchical structure remain to a large extent unexplained. In this paper we investigate in simulations, of a dynamic neural field (DNF) model, biologically-based learning and adaptation mechanisms that can provide insight into the development of hierarchically organized internal representations of naturalistic tasks. In line with recent experimental evidence from observational learning studies, the DNF model implements the idea that prediction errors play a crucial role for grouping fine-grained events into larger units. Our ultimate goal is to use the model to endow the humanoid robot ARoS with the capability to learn hierarchies in sequential tasks, and to use that knowledge to enable efficient collaborative joint tasks with human partners. For testing the ability of the system to deal with the real-time constraints of a learning-by-demonstration paradigm we use the same assembly task from our previous work on human-robot collaboration. The model provides some insights on how hierarchically structured task representations can be learned and on how prediction errors made by the robot and signaled by the demonstrator can be used to control such process.
机译:我们在日常生活中执行的许多任务是通过顺序执行一组目标导向的动作来实现的。这些动作通常是按层次结构组织的,对应于一组嵌套的目标和子目标。几种计算模型解决了人类对目标定向动作的分层执行。但是,神经学习机制在层次结构中支持目标定向动作的时间聚类,这在很大程度上尚无法解释。在本文中,我们在仿真中研究了动态神经场(DNF)模型,基于生物学的学习和适应机制,这些机制可为深入研究自然主义任务的分层组织内部表示形式提供信息。与来自观察学习研究的最新实验证据相一致,DNF模型实现了这样的思想,即预测误差对于将细粒度事件分组为更大的单位起着至关重要的作用。我们的最终目标是使用该模型赋予类人机器人ARoS学习顺序任务中的层次结构的能力,并利用该知识来实现​​与人类伙伴的高效协作联合任务。为了测试系统处理按演示学习范例的实时约束的能力,我们使用了以前的人机协作工作中的相同组装任务。该模型提供了一些关于如何学习分层结构的任务表示以及如何将由机器人造成的并由演示者发出信号的预测错误用于控制此类过程的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号