The majority of computer systems employ a login ID and password as the principal method for access security. In stand-alone situations, this level of security may be adequate, but when computers are connected to theinternet, the vulnerability to a security breach is increased. In order to reduce vulnerability to attack, biometric solutions have been employed. In this paper, we investigate the use of a behavioural biometric based on keystroke dynamics. Although there are several implementations of keystrokedynamics available - their effectiveness is variable and dependent on the data sample and its acquisition methodology. The results from this study indicate that the Equal Error Rate (EER) is significantly influenced by theattribute selection process and to a lesser extent on the authentication algorithmemployed. Our results also provide evidence that a Probabilistic Neural Network (PNN) can be superior in terms of reduced training time and classification accuracy when compared with a typical MLFN back-propagationtrained neural network.
展开▼