首页> 外文OA文献 >A machine learning approach to keystroke dynamics based user authentication
【2h】

A machine learning approach to keystroke dynamics based user authentication

机译:一种基于按键动态的用户身份验证的机器学习方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The majority of computer systems employ a login ID and password as the principal method for access security. In stand-alone situations, this level of security may be adequate, but when computers are connected to theinternet, the vulnerability to a security breach is increased. In order to reduce vulnerability to attack, biometric solutions have been employed. In this paper, we investigate the use of a behavioural biometric based on keystroke dynamics. Although there are several implementations of keystrokedynamics available - their effectiveness is variable and dependent on the data sample and its acquisition methodology. The results from this study indicate that the Equal Error Rate (EER) is significantly influenced by theattribute selection process and to a lesser extent on the authentication algorithmemployed. Our results also provide evidence that a Probabilistic Neural Network (PNN) can be superior in terms of reduced training time and classification accuracy when compared with a typical MLFN back-propagationtrained neural network.
机译:大多数计算机系统采用登录ID和密码作为访问安全性的主要方法。在独立情况下,此安全级别可能足够,但是当计算机连接到Internet时,安全漏洞的脆弱性就会增加。为了减少攻击的脆弱性,已经采用了生物识别解决方案。在本文中,我们研究了基于击键动力学的行为生物识别技术的使用。尽管可以使用多种击键动力学方法,但是它们的有效性是可变的,并且取决于数据样本及其获取方法。这项研究的结果表明,相等错误率(EER)受属性选择过程的影响很大,而对采用的身份验证算法的影响较小。我们的结果还提供了证据,与典型的MLFN反向传播训练的神经网络相比,概率神经网络(PNN)在减少训练时间和分类准确性方面可能更胜一筹。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号