In recent years, continuous fibre reinforced thermoplastic matrix composites have beensuccessfully employed in the aircraft, military and aerospace industries due to the excellentproperties (Brandt et al. 1993 & Nunes et al 2005a). In these and many other commercialengineering applications, they can replace other materials, such as thermosetting matrixcomposites. However, the high cost of the impregnation of continuous fibre thermoplasticcomposites, arising from the melting of the polymer or the use of solvents, still restricts theiruse in commercial applications. Hence, cost reduction largely depends on developing moreefficient methods for impregnating fibres with high-viscosity thermoplastics and forprocessing final composite parts.This chapter summarizes the development of new technologies to fabricate long andcontinuous fibre reinforced composite structures from thermoplastic matrix semi-products(towpregs and PCT – pre-consolidated tapes) for commercial and highly demandingmarkets.The production of continuous fibre reinforced thermoplastic matrix towpregs and PCT’swas done using a recently developed coating line (Nunes et al. 2008, 2010 & Silva, R.F. et al.2008).Using this prototype equipment, it was possible to produce glass fibre polypropylene (PP)and polyvinylchloride (PVC) towpregs for commercial markets and towpregs from carbonfibres and Primospire®, an amorphous highly aromatic material developed by SolvayAdvanced Polymers, for application in advanced markets (Nunes et al. 2005, 2009 & Silva, J.F. et al. 2010).To process these thermoplastic pre-pregs into composite structures, conventionalthermosetting equipments were adapted to fabricate thermoplastic matrix composites.Filament winding, pultrusion and hot compression moulding were the studied technologies.The mechanical properties determined on the final composites were compared with thetheoretical predictions and have shown to be acceptable for the targeted markets.As applications, filament wound pressure vessels prototypes for gas and incompressiblefluids were produced from towpregs and submitted to internal pressure burst tests [Silva,J. F. et al. 2008 & Velosa et al. 2009). These prototypes have accomplished all requirements ofthe applicable European standards.
展开▼
机译:近年来,由于其优异的性能,连续纤维增强的热塑性基体复合材料已成功用于飞机,军事和航空航天工业(Brandt等,1993; Nunes等,2005a)。在这些以及其他许多商业工程应用中,它们可以替代其他材料,例如热固性基质复合材料。然而,由于聚合物的熔化或溶剂的使用而导致的连续纤维热塑性复合材料的高浸渍成本仍然限制了它们在商业应用中的使用。因此,降低成本很大程度上取决于开发更有效的方法来浸渍高粘度热塑性塑料和加工最终的复合材料零件。本章概述了从热塑性基质半成品(丝束和PCT)制造长而连续的纤维增强复合材料结构的新技术的发展。 –适用于商业和高要求市场的预固化胶带。使用最近开发的涂布生产线(Nunes等人,2008年; 2010年; Silva,RF等人,2008年)完成了连续纤维增强热塑性基体的预浸料和PCT的生产。使用该原型设备,可以生产用于商业市场的玻璃纤维聚丙烯(PP)和聚氯乙烯(PVC)丝束,以及由碳纤维和由SolvayAdvanced Polymers开发的无定形高芳族材料Primospire®制成的丝束,用于先进市场(Nunes)。 et al.2005,2009&Silva,JF et al.2010)。将骨灰预浸料制成复合结构,采用传统的热固性设备制造热塑性基体复合材料。研究了细丝缠绕,拉挤成型和热压成型技术。将最终复合材料确定的机械性能与理论预测值进行比较,并证明是可接受的作为应用,由丝束制备了用于气体和不可压缩流体的长丝缠绕压力容器原型,并进行了内部压力爆破测试[Silva,J。 F.等。 2008&Velosa等。 2009)。这些原型满足了适用欧洲标准的所有要求。
展开▼