首页> 外文OA文献 >Measures of causality in complex datasets with application to financial data
【2h】

Measures of causality in complex datasets with application to financial data

机译:复杂数据集中因果关系的度量并应用于财务数据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This article investigates the causality structure of financial time series. We concentrate on three main approaches to measuring causality: linear Granger causality, kernel generalisations of Granger causality (based on ridge regression and the Hilbert-Schmidt norm of the cross-covariance operator) and transfer entropy, examining each method and comparing their theoretical properties, with special attention given to the ability to capture nonlinear causality. We also present the theoretical benefits of applying non-symmetrical measures rather than symmetrical measures of dependence. We apply the measures to a range of simulated and real data. The simulated data sets were generated with linear and several types of nonlinear dependence, using bivariate, as well as multivariate settings. An application to real-world financial data highlights the practical difficulties, as well as the potential of the methods. We use two real data sets: (1) U.S. inflation and one-month Libor; (2) S&P data and exchange rates for the following currencies: AUDJPY, CADJPY, NZDJPY, AUDCHF, CADCHF, NZDCHF. Overall, we reach the conclusion that no single method can be recognised as the best in all circumstances, and each of the methods has its domain of best applicability. We also highlight areas for improvement and future research.
机译:本文研究了金融时间序列的因果结构。我们集中于三种测量因果关系的主要方法:线性格兰杰因果关系,格兰杰因果关系的核概括(基于岭回归和交叉协方差算子的希尔伯特-施密特范数)和传递熵,研究每种方法并比较它们的理论性质,特别注意捕获非线性因果关系的能力。我们还介绍了应用非对称度量而不是依赖依赖对称度量的理论好处。我们将这些措施应用于一系列模拟和真实数据。使用双变量和多变量设置,以线性和几种非线性相关性生成模拟数据集。实际财务数据的应用突出了实际困难以及方法的潜力。我们使用两个真实的数据集:(1)美国通胀率和一个月的Libor; (2)以下货币的标准普尔数据和汇率:AUDJPY,CADJPY,NZDJPY,AUDCHF,CADCHF,NZDCHF。总的来说,我们得出的结论是,没有一种方法可以在所有情况下都被认为是最佳方法,并且每种方法都有其最佳适用性。我们还将重点介绍需要改进和未来研究的领域。

著录项

  • 作者

    Zaremba Anna; Aste Tomaso;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号