首页> 外文OA文献 >Mediation analysis with intermediate confounding: structural equation modeling viewed through the causal inference lens
【2h】

Mediation analysis with intermediate confounding: structural equation modeling viewed through the causal inference lens

机译:中间混淆的中介分析:通过因果推理透镜查看结构方程模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The study of mediation has a long tradition in the social sciences and a relatively more recent one in epidemiology. The first school is linked to path analysis and structural equation models (SEMs), while the second is related mostly to methods developed within the potential outcomes approach to causal inference. By giving model-free definitions of direct and indirect effects and clear assumptions for their identification, the latter school has formalized notions intuitively developed in the former and has greatly increased the flexibility of the models involved. However, through its predominant focus on nonparametric identification, the causal inference approach to effect decomposition via natural effects is limited to settings that exclude intermediate confounders. Such confounders are naturally dealt with (albeit with the caveats of informality and modeling inflexibility) in the SEM framework. Therefore, it seems pertinent to revisit SEMs with intermediate confounders, armed with the formal definitions and (parametric) identification assumptions from causal inference. Here we investigate: 1) how identification assumptions affect the specification of SEMs, 2) whether the more restrictive SEM assumptions can be relaxed, and 3) whether existing sensitivity analyses can be extended to this setting. Data from the Avon Longitudinal Study of Parents and Children (1990–2005) are used for illustration.
机译:调解研究在社会科学领域有着悠久的历史,而在流行病学领域则相对较新。第一所学校与路径分析和结构方程模型(SEM)相关联,而第二所学校则主要与因果推理的潜在结果方法内开发的方法有关。通过提供直接和间接影响的无模型定义以及明确的假设来进行识别,后者学校将在前者中直观发展的概念进行了形式化,并大大增加了所涉及模型的灵活性。但是,通过主要关注非参数识别,通过自然效应进行效应分解的因果推论方法仅限于排除中间混杂因素的环境。在SEM框架中自然会处理此类混杂因素(尽管存在非正式性和建模灵活性的警告)。因此,似乎有必要通过中间定义和因果推论得出的(参数)识别假设,与中间混杂因素重新审视SEM。在这里,我们研究:1)识别假设如何影响SEM的规格,2)是否可以放宽对SEM的限制,以及3)是否可以将现有的灵敏度分析扩展到此设置。雅芳父母和儿童纵向研究(1990-2005)的数据用于说明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号