首页> 外文OA文献 >Solving linear systems of equations over cyclotomic fields
【2h】

Solving linear systems of equations over cyclotomic fields

机译:在环场上求解线性方程组

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Let $AinQ^{ntimes n}[z]$ be a matrix of polynomials and $binQ^n[z]$ be a vector of polynomials. Let $m(z) = Phi_k[z]$ be the $k^{th}$ cyclotomic polynomial. We want to find the solution vector $xinQ^n[z]$ such that the equation $Ax equiv b bmod{m(z)}$ holds. One may obtain $x$ using Gaussian elimination, however, it is inefficient because of the large rational numbers that appear in the coefficients of the polynomials in the matrix during the elimination. In this thesis, we present two modular algorithms namely, Chinese remaindering and linear $p$-adic lifting. We have implemented both algorithms in Maple and have determined the time complexity of both algorithms. We present timing comparison tables on two sets of data, firstly, systems with random generated coefficients and secondly real systems given to us by Vahid Dabbaghian which arise from computational group theory. The results show that both of our algorithms are much faster than Gaussian elimination.
机译:令$ AinQ ^ {ntimesn} [z] $为多项式矩阵,而$ binQ ^ n [z] $为多项式向量。令$ m(z)= Phi_k [z] $是$ k ^ {th} $个环多项式。我们想要找到解矢量$ xinQ ^ n [z] $,使得等式$ Ax equiv b bmod {m(z)} $成立。可以使用高斯消去法获得$ x $,但是它效率不高,因为在消除过程中矩阵的多项式系数中会出现较大的有理数。在本文中,我们提出了两种模块化算法,即中文余数和线性$ p $ -adic提升。我们已经在Maple中实现了这两种算法,并确定了这两种算法的时间复杂度。我们提供关于两组数据的时序比较表,首先是具有随机生成系数的系统,其次是Vahid Dabbaghian由计算组理论产生的实系统。结果表明,我们的两种算法都比高斯消除快得多。

著录项

  • 作者

    Chen Liang;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号