首页> 外文OA文献 >Energy Management Strategies and Evaluation for Plug-in Electric Vehicles - On and Off the Road
【2h】

Energy Management Strategies and Evaluation for Plug-in Electric Vehicles - On and Off the Road

机译:插电式电动汽车的能源管理策略和评估-上路和下路

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Electric vehicle (EV) industries are driven by new technologies in batteries and powertrains. This thesis studies the cutting-edge Formula E racing vehicles with vehicle simulation and optimization for energy efficiency. On the consumer side, a new challenge EVs introduce is the need for large-scale charging infrastructure with minimum grid impact. This thesis studies EV charging management on the daily basis, featuring practical smart charging solutions at public locations and bi-directional (dis)charging at workplace and residence. Techniques that support smart charging are also studied. A data-mining based load disaggregation approach is developed to evaluate the general energy usage in the residential context. A machine-learning based load forecasting model is proposed to predict short-term residential loads in ultra-small scales. Overall, this thesis anticipates every aspect of EVsu27 daily activities, whether it is on or off the road, and suggests solutions to maximizing EV utilization for both drivers and the smart grid.
机译:电动汽车(EV)行业由电池和动力总成的新技术驱动。本文通过对汽车的仿真和优化来优化能效,研究了最先进的Formula E赛车。在消费者方面,电动汽车引入的新挑战是需要具有最小电网影响的大规模充电基础设施。本文每天研究电动汽车的充电管理,其特点是在公共场所提供实用的智能充电解决方案,并在工作场所和住所进行双向(放电)充电。还研究了支持智能充电的技术。开发了一种基于数据挖掘的负荷分解方法,以评估住宅环境中的一般能源使用情况。提出了一种基于机器学习的负荷预测模型,以超小型规模预测短期住宅负荷。总体而言,本文预测了电动汽车日常活动的各个方面,无论它是在路上还是在路上,并提出了解决方案,以最大限度地提高驾驶员和智能电网的电动汽车利用率。

著录项

  • 作者

    Zhang Guanchen;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号