首页> 外文OA文献 >The closest point method for the numerical solution of partial differential equations on moving surfaces
【2h】

The closest point method for the numerical solution of partial differential equations on moving surfaces

机译:运动表面偏微分方程数值解的最近点法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Partial differential equations (PDEs) on surfaces arise in a wide range of applications. The closest point method is a recent embedding method that has been used to solve a variety of PDEs on smooth surfaces using a closest point representation of the surface and standard Cartesian grid methods in the embedding space. The original closest point method (CPM) was designed for problems posed on static surfaces, however the solution of PDEs on moving surfaces is of considerable interest as well. Here we propose two different approaches for solving PDEs on moving surfaces using a combination of the CPM and a grid based particle method. The grid based particle method (GBPM) represents and tracks surfaces using meshless particles and an Eulerian reference grid. In our first approach, a modification of the GBPM is introduced to ensure that all the grid points within a computational tube surrounding the surface are active. The modified GBPM is tested in geometric motions of surfaces to verify the correctness of the new algorithm. A coupled method is proposed combining the modified GBPM and the CPM and tested on a number of numerical examples. Our second approach uses generalized finite difference schemes derived from radial basis functions (RBF-FD) in the implementation of the closest point method. An explicit and an implicit formulation of the CPM using RBF-FD are presented along with numerical experiments for the convergence of the method, including the approximation of the solution of reaction-diffusion equations and the Cahn-Hilliard equation on a variety of surfaces. Finally, a coupled method of the CPM that uses RBF-FD and the original GBPM is proposed and used to solve PDEs on moving surfaces.
机译:表面上的偏微分方程(PDE)出现在广泛的应用中。最近点法是最近的一种嵌入方法,已使用嵌入空间中的曲面的最接近点表示法和标准笛卡尔网格方法来解决光滑表面上的各种PDE。最初的最接近点方法(CPM)是为解决静态表面上存在的问题而设计的,但是在移动表面上PDE的解决方案也引起了人们的极大兴趣。在这里,我们提出了两种不同的方法,它们结合使用CPM和基于网格的粒子方法来求解运动表面上的PDE。基于网格的粒子方法(GBPM)使用无网格粒子和欧拉参考网格表示并跟踪表面。在我们的第一种方法中,对GBPM进行了修改,以确保围绕表面的计算管内的所有网格点均处于活动状态。修改后的GBPM在曲面的几何运动中进行了测试,以验证新算法的正确性。提出了一种将改进的GBPM和CPM相结合的耦合方法,并在许多数值示例上进行了测试。我们的第二种方法在实现最接近点方法时使用了从径向基函数(RBF-FD)派生的广义有限差分方案。提出了使用RBF-FD的CPM的显式和隐式公式,以及用于该方法收敛的数值实验,包括在各种表面上的反应扩散方程和Cahn-Hilliard方程的解的近似。最后,提出了一种使用RBF-FD和原始GBPM的CPM耦合方法,并将其用于求解运动表面上的PDE。

著录项

  • 作者

    Petras Argyrios;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号