首页> 外文OA文献 >Regional-scale digital soil mapping in british columbia using legacy soil survey data and machine-learning techniques
【2h】

Regional-scale digital soil mapping in british columbia using legacy soil survey data and machine-learning techniques

机译:不列颠哥伦比亚省使用传统土壤调查数据和机器学习技术进行区域规模的数字土壤制图

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Digital soil mapping (DSM) is the intersection of geographical information systems (GIS), and (spatial) statistics and is a sub-discipline of soil science that has been increasingly relevant in helping to address emerging issues such as food production, climate change, land resource management, and the management of earth systems. Even with the need for digital soil information in the raster format, such information is limited for British Columbia (BC) where much of it is digitized from legacy soil survey maps with inherent spatial problems related to polygon boundaries; attribute specificity due to multi-component map units; and map scale where small-scale surveys have limited use in addressing local and regional needs. In spite of these issues, legacy soil survey data are still useful as sources of training data where machine-learning techniques may be used to extract soil-environmental relationships from a survey and a suite of digital environmental covariates. This dissertation describes a framework for developing training data from conventional soil survey maps and compares various machine-learning techniques for predicting the spatial patterns of qualitative soil data such as soil parent material and soil classes. Results of this research included maps of soil parent material, Great Groups, and Orders for the Lower Fraser Valley and a soil Great Group map for the Okanagan-Kamloops region at a 100 m spatial resolution. Key findings included (1) the recognition of Random Forest being the most effective machine-learner based on two model comparison studies; (2) the conclusion that model choice greatly impacted the accuracy of predictions; (3) the method for developing training data greatly impacted the accuracy through a comparison of four methods; and (4) that training data derived from soil survey maps were more effective in representing the feature space of various classes in comparison to using training data derived from soil pits. This study advances the understanding of model selection and training data development in DSM and may facilitate the future development of methodologies for provincial maps of BC.
机译:数字土壤测绘(DSM)是地理信息系统(GIS)和(空间)统计数据的交叉点,是土壤科学的一个子学科,在帮助解决诸如食品生产,气候变化,土地资源管理以及地球系统的管理。即使需要栅格格式的数字土壤信息,但对于不列颠哥伦比亚省(BC)来说,这种信息还是很有限的,因为该信息大部分是从具有与多边形边界相关的固有空间问题的传统土壤调查地图中数字化的;由于多分量图单元的属性特异性;地图比例尺,其中小规模的调查在满足本地和区域需求方面使用有限。尽管存在这些问题,但传统的土壤调查数据仍然可用作培训数据的来源,在这些数据中,可以使用机器学习技术从调查和一组数字环境协变量中提取土壤与环境的关系。本文介绍了一种从常规土壤调查图中开发训练数据的框架,并比较了各种用于预测定性土壤数据空间模式的机器学习技术,例如土壤母体材料和土壤类别。这项研究的结果包括以100 m的空间分辨率绘制的土壤母体,大群和下弗雷泽河谷阶的地图以及Okanagan-Kamloops地区的土壤大群地图。主要发现包括:(1)根据两项模型比较研究,将“随机森林”识别为最有效的机器学习器; (2)模型选择极大地影响了预测准确性的结论; (3)训练数据的开发方法通过四种方法的比较极大地影响了准确性; (4)与使用从土坑获得的训练数据相比,从土壤调查图获得的训练数据在表示各个类别的特征空间方面更为有效。这项研究提高了DSM中模型选择和训练数据开发的理解,并可能促进BC省级地图方法的未来发展。

著录项

  • 作者

    Heung Brandon;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号