首页> 外文OA文献 >A goodness-of-fit test for semi-parametric copula models of right-censored bivariate survival times
【2h】

A goodness-of-fit test for semi-parametric copula models of right-censored bivariate survival times

机译:右删失双变量生存时间的半参数copula模型的拟合优度检验

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In multivariate survival analyses, understanding and quantifying the association between survival times is of importance. Copulas, such as Archimedean copulas and Gaussian copulas, provide a flexible approach of modeling and estimating the dependence structure among survival times separately from the marginal distributions (Sklar, 1959). However, misspecification in the parametric form of the copula function will directly lead to incor- rect estimation of the joint distribution of the bivariate survival times and other model-based quantities.The objectives of this project are two-folded. First, I reviewed the basic definitions and properties of commonly used survival copula models. In this project, I focused on semi- parametric copula models where the marginal distributions are unspecified but the copula function belongs to a parametric copula family. Various estimation procedures of the de- pendence parameter associated with the copula function were also reviewed. Secondly, I extended the pseudo in-and-out-of-sample (PIOS) likelihood ratio test proposed in Zhang et al. (2016) to testing the semi-parametric copula models for right-censored bivariate sur- vival times. The PIOS test is constructed by comparing two forms of pseudo likelihoods, one is the "in-sample" pseudo likelihood, which is the full pseudo likelihood, and the other is the "out-of-sample" pseudo likelihood, which is a cross-validated pseudo likelihood by the means of jacknife. The finite sample performance of the PIOS test was investigated via a simulation study. In addition, two real data examples were analyzed for illustrative purpose.
机译:在多元生存分析中,理解和量化生存时间之间的关联非常重要。 Copulas,例如Archimedean copulas和Gaussian copulas,提供了一种灵活的方法来建模和估计生存时间与边际分布之间的依赖关系(Sklar,1959)。然而,copula函数的参数形式的错误指定将直接导致对二元生存时间和其他基于模型的数量的联合分布的不正确估计。该项目的目标有两个。首先,我回顾了常用生存copula模型的基本定义和性质。在这个项目中,我专注于半参数联动模型,其中边际分布未指定,但是联动函数属于参数联动族。还回顾了与copula函数相关的依赖参数的各种估计程序。其次,我扩展了Zhang等人提出的伪抽样和抽样(PIOS)似然比检验。 (2016年)测试右参数双变量生存时间的半参数copula模型。 PIOS测试是通过比较两种形式的伪似然来构建的,一种是“样本内”伪似然,即完全伪似然,另一种是“样本外”伪似然,这是一种交叉。折刀验证伪似然。 PIOS测试的有限样本性能通过模拟研究进行了研究。此外,出于说明目的,分析了两个真实的数据示例。

著录项

  • 作者

    Mei Moyan;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号