首页> 外文OA文献 >Design and Validation of a Fall Event Detection System using Wearable Sensors: A Machine Learning Approach
【2h】

Design and Validation of a Fall Event Detection System using Wearable Sensors: A Machine Learning Approach

机译:使用可穿戴传感器的跌倒事件检测系统的设计和验证:一种机器学习方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Falls are the number one cause of injury and injury-related deaths in older adults. Nearly one-half of those over age 65 are unable to rise independently after falling, and a significant source of morbidity is the ‘long-lie’ that often occurs after falling. A wearable sensor system that automatically detects falls can facilitate quicker delivery of care. Such systems can also log information on the nature of the fall to inform prevention efforts. This thesis describes my efforts to develop improved methods for detecting fall-related events in older adults through wearable sensors (i.e. accelerometer and gyroscopes). In particular, I developed and evaluated novel approaches to extend the utility of fall monitoring systems beyond post-impact fall detection, to pre-impact fall detection, near-fall detection and causes of fall detection. In my first study, I conducted laboratory experiments to compare the accuracy of machine learning versus threshold-based approaches for distinguishing falls from daily activities based on wearable sensor data. In my second study, I examined the accuracy of machine learning algorithms in distinguishing falls from real-world fall and non-fall datasets from young and older adults. My third study focused on pre-impact fall detection (detecting falls during the descent phase before impact) which is relevant to the design of active protective gear (e.g., airbags). In particular, I determined how the data window size and lead-time affects classification accuracy based on a single waist sensor. In my fourth study, I developed a near-fall identification algorithm based on machine learning, which could provide biofeedback to the individual of their state of balance. I examined how the number and location of sensors on the body influenced the accuracy of the algorithm in identifying near-fall from activities of daily living. My final study examined the ability of wearable sensors to provide objective evidence on the cause and circumstances of falls, to aid in diagnosing and treating the underlying causes of falls in older adults. My overall efforts advance the potential of wearable sensors (i.e. accelerometers and gyroscopes) for providing objective and clinically relevant information for the prevention and treatment of falls and their related injuries in older adults.
机译:跌倒是老年人受伤和与伤害有关的死亡的第一原因。 65岁以上的老人中有将近一半会在跌倒后无法独立上升,而发病的一个重要原因是跌倒后经常发生的“长期说谎”。自动检测跌倒的可穿戴传感器系统可以帮助您更快地进行护理。这样的系统还可以记录有关跌倒性质的信息,以告知预防工作。本文介绍了我的工作,以开发通过可穿戴传感器(即加速度计和陀螺仪)检测老年人跌倒相关事件的改进方法。特别是,我开发并评估了新颖的方法,以将跌倒监控系统的应用范围从撞击后跌倒检测扩展到撞击前跌倒检测,近乎跌倒检测和跌倒原因。在我的第一项研究中,我进行了实验室实验,以比较机器学习与基于阈值的方法的准确性,该方法基于可穿戴传感器数据将跌落与日常活动区分开。在我的第二项研究中,我研究了机器学习算法在区分跌倒数据与真实世界的跌倒数据集以及年轻人和老年人的非跌倒数据集方面的准确性。我的第三项研究集中于撞击前的跌倒检测(在撞击前的下降阶段检测跌倒),这与主动保护装置(例如安全气囊)的设计有关。特别是,我基于单个腰部传感器确定了数据窗口大小和前置时间如何影响分类准确性。在我的第四项研究中,我开发了一种基于机器学习的接近跌倒识别算法,该算法可以为个体的平衡状态提供生物反馈。我检查了传感器在人体上的数量和位置如何影响算法的准确性,以识别日常生活活动中的坠落。我的最终研究检查了可穿戴传感器为跌倒的原因和情况提供客观证据的能力,以帮助诊断和治疗老年人跌倒的根本原因。我的整体努力提高了可穿戴传感器(例如,加速度计和陀螺仪)为预防和治疗老年人跌倒及其相关伤害提供客观和临床相关信息的潜力。

著录项

  • 作者

    Aziz Omar;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号