首页> 外文期刊>IEEE sensors journal >An Analysis of Segmentation Approaches and Window Sizes in Wearable-Based Critical Fall Detection Systems With Machine Learning Models
【24h】

An Analysis of Segmentation Approaches and Window Sizes in Wearable-Based Critical Fall Detection Systems With Machine Learning Models

机译:具有机器学习模型的可穿戴式临界秋季检测系统中分割方法和窗口尺寸的分析

获取原文
获取原文并翻译 | 示例

摘要

Falls are the major risks and threats among elderly population. Various studies have developed automatic critical fall detection systems for emergency alarms and medical services. Window sizes and segmentation approaches would affect the system performance in terms of power consumption, computational speed and reliability that are essential considerations in the real-world implementation. Intuitively, employing shorter window sizes and simpler segmentation approaches leads to a faster detection speed and better power efficiency. However, few works explore the effects of windowing methods on detection performance, especially for machine learning models. This paper investigates the impact of segmentation approaches and window sizes in wearable-based critical fall detection systems with machine learning models. Two generally used segmentation approaches, including sliding windows and impact-defined windows, are explored with a range of window sizes from 0.5 s to 5.0 s and four machine learning models: Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Classification and Regression Tree (CART) and Naive Bayes (NB). The results show that sliding windows are more sensitive to the changes of window sizes compared to impact-defined windows. However, the differences between the best performance of both segmentation approaches are within 1% (99.66% in sliding windows and 99.78% in impact-defined windows). For systems with SVM and k-NN models, using 0.5 s window sizes in sliding windows and combinations of 1.5 s backward and forward windows in impact-defined windows are sufficient to achieve at least 94% accuracy and 98% accuracy.
机译:下跌是老年人口中的主要风险和威胁。各种研究开发了用于紧急警报和医疗服务的自动临界秋季检测系统。窗口尺寸和分割方法将在实际实施中的基本考虑的功耗,计算速度和可靠性方面影响系统性能。直观地,采用较短的窗口尺寸和更简单的分割方法导致更快的检测速度和更好的功率效率。然而,很少有作品探讨窗口方法对检测性能的影响,尤其是机器学习模型。本文研究了机器学习模型中可穿戴式临界秋季检测系统中分割方法和窗口尺寸的影响。两种通常使用的分割方法包括滑动窗口和影响定义的窗口,探讨了0.5秒至5.0级和四台机器学习模型的一系列窗口尺寸:支持向量机(SVM),K最近邻居(K-NN ),分类和回归树(推车)和幼稚贝叶斯(NB)。结果表明,与影响定义的Windows相比,滑动窗口对窗口尺寸的变化更敏感。然而,两种分割方法的最佳性能之间的差异在1%(滑动窗口中的99.66%,而受影响的窗口中的99.78%)。对于具有SVM和K-NN型号的系统,使用0.5 S窗口尺寸在滑动窗口中,在冲击定义的窗口中使用1.5秒的后向后窗口的组合足以实现至少94%的精度和98%的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号