首页> 外文OA文献 >Massively Parallelized Monte Carlo Simulation and Its Applications in Finance
【2h】

Massively Parallelized Monte Carlo Simulation and Its Applications in Finance

机译:大规模并行蒙特卡罗模拟及其在金融中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, we propose, develop and implement a tool that increases the computational speed of exotic derivatives pricing at a fraction of the cost of traditional methods. Our paper focuses on investigating the computing efficiencies of GPU systems. We utilize the GPU’s natural parallelization capabilities to price financial instruments. We outline our implementation, solutions to practical complications arising during implementation and how much faster GPU systems are. Each step that we explore has a significant impact on the efficiency and performance of GPU pricing. Rather than speaking in theoretical, abstract terms, we detail each step in an attempt to give the reader a clear sense of what’s going on. Efficiency is one of the pillars of financial calculations. With the volume of risk calculations mandated by prudent risk management practices, even moderate improvements in calculation efficiency can translate into material changes in trading limits or savings in regulatory capital. This can make the difference between a growing, successful trading operation or an also-ran. Unfortunately, a decent algorithm written in VBA cannot calculate option prices at the same speed as a farm of computers, particularly if we must price the trade in less than 150 milliseconds using 10 million simulation paths. Fast forward from one trade to a book of several hundred thousand trades, many of which are exotic products. Not only is it necessary to price each trade, but we must do so in each of thousands of different market scenarios in order to calculate even basic risk measures such as Greeks and Value-at-Risk (VaR). At the end of the paper, we discuss how GPUs are currently used in the industry and their various advantages, including cost, time, accuracy and calculation frequency. In addition, we discuss the implementation challenges of GPU systems and the attention to detail that is required for memory allocation.
机译:在本文中,我们提出,开发并实现了一种工具,该工具可以以很少的传统方法成本提高外来衍生产品定价的计算速度。本文着重研究GPU系统的计算效率。我们利用GPU的自然并行化功能为金融工具定价。我们概述了实现,解决实现过程中出现的实际问题的解决方案以及GPU系统的速度。我们探索的每个步骤都会对GPU定价的效率和性能产生重大影响。我们没有用理论上的抽象术语来表达,而是详细介绍了每个步骤,以使读者清楚地了解正在发生的事情。效率是财务计算的支柱之一。在审慎的风险管理实践要求进行大量风险计算的情况下,即使计算效率的适度提高也可以转化为交易限额的重大变化或监管资本的节省。这可以使增长,成功的交易操作或还行之间有所不同。不幸的是,用VBA编写的像样算法无法以与计算机场相同的速度来计算期权价格,特别是如果我们必须使用1000万条模拟路径在不到150毫秒的时间内为交易定价。从一个交易快速发展到数十万笔交易,其中许多都是奇特的产品。不仅有必要为每笔交易定价,而且我们还必须在成千上万种不同的市场情景中进行定价,以便甚至计算基本的风险度量标准,例如希腊和风险价值(VaR)。在本文的最后,我们讨论了GPU在当前行业中的使用方式及其各种优势,包括成本,时间,准确性和计算频率。此外,我们讨论了GPU系统的实现挑战以及对内存分配所需细节的关注。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号