首页> 外文OA文献 >Radiation shielding design, verification and dose distribution calculations for industrial and insect irradiation facilities
【2h】

Radiation shielding design, verification and dose distribution calculations for industrial and insect irradiation facilities

机译:工业和昆虫辐照设施的辐射屏蔽设计,验证和剂量分布计算

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This study focused on analysis of the new radiation shield design, verification and doseuddistribution calculations for three irradiation facilities: The analysis of the new radiationuddesign concrete shield for the Citrusdal facility, and shield verification calculationsud(radiological safety assessment) for the already constructed Stellenbosch and HEPROudirradiation facilities. Additionally, as a subordinate objective, the study reports on doseuddistributions in the irradiated insect containers of the Citrusdal irradiation facility, andudsample product boxes of the HEPRO irradiation facility.udIn 2006 a private company, Citrus Research International (CRI), began the engineeringuddesign of a new insect sterilization facility in Citrusdal in the Western Cape region ofudSouth Africa, which was then constructed from ordinary concrete density (3 ¸ 2.35udg/cm$ ) in the year 2007. This facility employs a very successful ionising radiation basedudmethod, the Sterile Insect Technique (SIT), for drastically reducing or controlling insectudpopulation, which poses a serious pest problem in the Citrusdal agricultural area. TheudSIT uses the radionuclide 60Co as the source of ionising radiation. The design-baseudactivity of the 60Co source for the Citrusdal facility was 740 TBq (20 kCi). Therefore,udthe new radiation shield design was done for this source strength. Analysis of the shielduddesign has been carried-out using the integrated point-kernel (QAD-CGGP and theudMathCAD worksheet) and confirmed with a Monte Carlo (MCNPX) radiation transportudcomputer codes. This was done by considering the concrete shielding walls, the roof asudwell as the entrance/exit labyrinth at critical points for radiological protection purposes.udHowever, only MCNPX was used to ascertain whether the labyrinth entrance/exit wasudradiologically safe because the point-kernel uses a semi-analytical, approximateudmethodology that is not able to account for radiation streaming through labyrinth.udSatisfactory agreement was found between the three computational methods.udStellenbosch irradiation facility is being operated by the Agricultural Research Counciludas insect sterilization facility at Nietvoorbij, that is situated approximately 70 km fromudCape Town. This facility uses a radiation based Sterile Insect technique; using 60Co asudthe source of ionising radiation. The facility is designed chiefly for sterilization of fruitudflies which presents a major problem in the agricultural area in South Africa. The facilityudwas designed for a 5 kCi (0.185 PBq) 60Co source, but is now operated with a 10 kCiud(0.37 PBq) 60Co source (reference source strength in the year 1999). The source activityudwas 3.32 kCi (0.12 PBq) in October 2007, i.e., shield verification calculations wasudperformed for this activity. This was carried out using QAD-CGGP and verified withudMCNPX radiation transport computer codes, and where possible, validated withudmeasurements. Dose rates were measured with a calibrated gamma-ray monitor,udGRAETZ X5C. The spatial distribution of dose rates around the shielding concrete walls,udon top of the roof and in various positions along the maze were considered. The doseudrates at the closest distance (at 10 cm) from the exterior of the concrete shielding wallsudwere slightly higher. However, good agreement was found between measured andudsimulated (calculated) values.udHEPRO is a commercial irradiation facility situated in Ferrule Avenue, Montagu Gardens, Milnerton, City of Cape Town, Western Cape, South Africa. The HEPROudfacility is mainly used for food irradiation and sterilization of medical instruments. This facility was originally designed to operate with a maximum '!Co source strength of 1udMCi (37 PBq). However, to increase the product throughput rate, the source strength hadudto be increased to a nominal 1.5 MCi (55.5 PBq) in 2005/6. Nevertheless a radiologicaludsafety assessment was performed for a source strength of 2 MCi (2 37 PBq 74 PBq)ud60Co, because any radiation safety system such as radiation shielding must have a “safetyudfactor”. Again the point-kernel method was used for radiological safety assessment andudverified with MCNPX radiation transport computer code. Observation of critical spotsudand where possible the spatial distribution of dose rates were measured using a calibratedudgamma-ray monitor, GRAETZ X5C, to provide additional confirmation of results. Theudspatial distribution of dose rates around the shielding concrete along the walls, roof,udcable penetration inside the hut on roof, inside irradiation vault, above water pool,udhotspot on wall, pneumatic pipe penetrations, sliding plug-door, and ducts of the hoistcableudsituated on the roof of the locked hut were considered. The comparison of dose rateudvalues obtained using the aforementioned methods showed a slight deviation such thatudthey were considered satisfactory.udThe use of Monte Carlo computational tools such as MCNPX in support of theudprediction/assessment of the absorbed dose distributions in the irradiated product of theudirradiation facilities can prove to be economically effective, representing savings in theudutilization of dose meters, among other benefits. The absorbed dose distributions withinudthe insect containers were calculated with the model developed in MCNPX for one hourudof exposure. The modelling was carried out for a 60Co source with a nominal activity ofud16.8 kCi, i.e., 622 TBq. The calculated values were compared to an average value fromudthe preliminary experimental (sterility test) measurements. The sterility test for theudinsects, False Codling Moths, was done during the onset of the SIT programme at Citrusdal irradiation facility. The variability of the dose distribution inside the insectudcanisters were within acceptable dose values for adequate sterilising False CodlingudMoths.udA systematic computational calculation methods was used to model/simulate the sampleudproduct undergoing irradiation in a 60Co source for HEPRO industrial irradiator facility.udThis was carried-out using the Monte Carlo code—MCNPX. The calculation was doneudfor a source-rack containing 4 25 100 60Co pins, having a total activity of about 1udMCi (37 PBq). Four boxes were stacked around about 50 cm away from the sourceudcenterline. Each square box of sample product was rotated by 90° around the horizontaludaxis (perpendicular to the source rack), i.e., three times so that each of the four side ofudthe box faced the source rack once during an irradiation session. A specific Fortran-90udcode uses an algorithm to calculate the absorbed dose distribution for equal-timeudirradiation was therefore applied. The Fortran-90 code uses the dose values calculated byudMCNPX and sums them in a suitable way in order to reproduce the mentioned rotations.udThe calculations revealed highest absorbed dose at the edges of the box, and evenudslightly higher at the four corners. The lowest absorbed dose was noticed at the centre of the sample product.
机译:这项研究的重点是对三种辐射设施的新型辐射防护罩设计,验证和剂量 ud分布计算进行分析:对柑桔类设施的新型辐射 uddesign混凝土防护罩进行分析,以及对三种辐射设施进行辐射防护评估计算 ud(放射线安全评估)已经建造的斯泰伦博斯和HEPRO 辐射设施。此外,作为从属目标,该研究报告了Citrusdal辐照设施的辐照昆虫容器和HEPRO辐照设施的 udsample产品盒中的剂量 ud分布。 ud2006年,一家私人公司Citrus Research International(CRI),在 ud南非的西开普地区的Citrusdal开始了一个新的昆虫杀菌设备的工程设计 uddesign,然后在2007年以普通混凝土密度(3¸2.35 udg / cm $)建造了该设备。非常成功的基于电离辐射的 udmethod(不育昆虫技术(SIT)),用于大幅减少或控制昆虫的种群,这在Citrusdal农业地区造成了严重的害虫问题。 udSIT使用放射性核素60Co作为电离辐射源。 Citrusdal设施的60Co来源的设计基准/活性为740 TBq(20 kCi)。因此,为此辐射强度进行了新的辐射屏蔽设计。使用集成的点内核(QAD-CGGP和udMathCAD工作表)对屏蔽 uddesign进行了分析,并通过蒙特卡洛(MCNPX)辐射传输 udcomputer代码进行了确认。这是通过考虑混凝土屏蔽墙,屋顶以及作为放射防护目的的临界点的入口/出口迷宫来完成的。 ud但是,仅MCNPX用于确定迷宫的入口/出口是否在放射学上是安全的,因为点内核使用半解析的近似 udmethodology,无法解释通过迷宫的辐射流。 ud三种计算方法之间的令人满意的协议。 udStellenbosch辐射设施由农业研究理事会运营 udas昆虫Nietvoorbij的消毒设施,距 ud开普敦约70公里。该设施使用基于辐射的无菌昆虫技术;使用60Co作为电离辐射源。该设施主要设计用于水果/果蝇的灭菌,这在南非的农业地区是一个主要问题。该设施曾设计用于5 kCi(0.185 PBq)60Co放射源,但现在使用10 kCi ud(0.37 PBq)60Co放射源(1999年的参考放射源强度)运行。 2007年10月的源活动ud为3.32 kCi(0.12 PBq),即对该活动进行了屏蔽验证计算。这是使用QAD-CGGP进行的,并已通过 udMCNPX辐射传输计算机代码进行了验证,并在可能的情况下通过了 udmeasurements进行了验证。剂量率用校准的伽马射线监控器udGRAETZ X5C测量。考虑了在屏蔽混凝土墙周围,屋顶的乌冬面以及沿着迷宫的各个位置的剂量率的空间分布。距混凝土屏蔽墙外部最近的距离(10厘米)处的剂量略高。但是,在测量值和模拟值(计算值)之间找到了很好的一致性。 udHEPRO是位于南非西开普省开普敦市Milnerton的Montagu Gardens的Ferrule Avenue的商业辐射设施。 HEPRO udfacility主要用于食品辐照和医疗器械灭菌。该设备最初设计为以最大!Co源强度为1 udMCi(37 PBq)运行。但是,为了提高产品吞吐率,必须在2005/6年将光源强度提高到标称的1.5 MCi(55.5 PBq)。但是,对辐射强度为2 MCi(2 37 PBq 74 PBq) ud60Co的放射线安全性进行了评估,因为任何辐射安全系统(例如辐射屏蔽)都必须具有“安全性/非安全因素”。再次将点核方法用于放射线安全评估,并用MCNPX辐射传输计算机代码进行了验证。观察临界点 udand,并使用校准的 udgamma射线监测仪GRAETZ X5C测量剂量率的空间分布,以进一步证实结果。沿墙壁,屋顶,屋顶小屋内部,辐射拱顶内部,水池上方,墙壁上的热点,墙壁上的热点,气动管道穿透,滑动塞门周围的屏蔽混凝土周围剂量率的空间分布,并考虑了可锁定的管道在锁定的小屋的屋顶上。使用上述方法获得的剂量率/ ud值的比较显示出轻微的偏差,因此认为它们是令人满意的。 ud使用蒙特卡罗计算工具(例如MCNPX)来支持预测/评估吸收剂量分布。辐照设施的辐照产品可以证明在经济上是有效的,除其他好处外,还可以节省剂量计的辐照度。使用在MCNPX中开发的暴露1小时/ udud模型计算昆虫容器内的吸收剂量分布。对标称活度为 ud16.8 kCi,即622 TBq的60Co源进行了建模。将计算值与初步实验(无菌测试)测量的平均值进行比较。在Citrusdal辐照设施的SIT程序启动期间,对昆虫False Codling蛾进行了无菌测试。为了对False Codling / udMoths进行充分的灭菌,昆虫 udcanister内剂量分布的变化在可接受的剂量值之内。 ud使用了系统的计算方法来模拟/模拟在60Co光源下辐照的样品 udproduct用于HEPRO工业辐照器设施。 ud使用蒙特卡罗代码MCNPX进行。对包含4个25 100 60Co引脚的源机架进行了计算,总活动度约为1 udMCi(37 PBq)。四个盒子堆放在距源中心线约50厘米的位置。每个方形的样品产品盒绕水平垂直轴(垂直于源架)旋转90°,即旋转3次,以使样品盒的四个侧面中的每个侧面在照射过程中一次面对源架。特定的Fortran-90 udcode使用一种算法来计算等时辐照的吸收剂量分布。 Fortran-90代码使用 udMCNPX计算的剂量值,并以适当的方式对其求和,以重现上述旋转。 ud计算结果显示,盒子边缘的吸收剂量最高,四个剂量甚至更高。角落。在样品产品的中心发现最低的吸收剂量。

著录项

  • 作者

    Sibiya Thomas Elphus;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号