首页> 外文OA文献 >Kinetic and thermodynamic characterization of the South African subtype C HIV-1 protease : implications for drug resistance
【2h】

Kinetic and thermodynamic characterization of the South African subtype C HIV-1 protease : implications for drug resistance

机译:动力学和热力学表征的南非C型HIV-1蛋白酶:对耐药性的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

ABSTRACTudThe magnitude of the AIDS epidemic is well documented. It has been shown thatudAfrica constitutes about 70 % of people infected with HIV worldwide. Efforts toudcontrol the AIDS epidemic have focused heavily on studies pertaining to the biology,udbiochemistry and structural biology of HIV and on the interactions between HIVudproteins and new drugs. One of the most challenging problems in AIDS therapy is thatudHIV develops drug-resistant variants rapidly. Extensive research has been dedicatedudto designing resistance-evading drugs for HIV-1 protease (predominantly subtype B),udwhich is crucial for the maturation of viral, structural and enzymatic proteins. Thereudare 10 subtypes of HIV-1 within the major group of the virus, with subtype Cudaccounting for about 95 % of infections in South Africa. Since HIV-1 antiretroviraludtreatment has been developed and tested against the B subtype, which is prevalent inudNorth America, Western Europe and Australia, an important question relates to theudeffectiveness of these drugs against the C subtype. At this point, however, little isudknown about inhibitor-resistant mutations in the subtype C. The study, therefore,udlooked at the two active site mutations (V82A and V82F/I84V) in the South AfricanudHIV-1 subtype C protease (C-SA) emerging from the viral population circulating inudpatients. These mutations are well-characterized within the framework of the subtypeudB and are known to cause cross-resistance to most of inhibitors currently in clinicaluduse. Protein engineering techniques were used to generate the V82A and theudV82F/I84V variants. Comparative studies with the wild-type HIV-1 C-SA proteaseudwere performed. The spectral properties of the V82A and the V82F/I84V variantsudindicated no changes in the secondary structure in the respective variant proteins.udTryptophan and tyrosine fluorescence indicated a major difference in the intensities atudthe emission maxima for all three proteins. The fluorescence intensity of theudV82F/I84V variant, in particular, was significantly enhanced indicating theudoccurrence of tertiary structural changes at/near the flap region. Both mutations didudnot impact significantly upon catalytic function. Both variants also had the same Kmudvalues comparable to that of the wild-type enzyme. The catalytic efficiencies and theudkinetic constants were lowered 3.6-fold for the V82A mutation and 6-fold for theudV82F/I84V mutation relative to the wild-type C-SA protease. Inhibition studies wereudperformed using four inhibitors in clinical use (saquinavir, ritonavir, indinavir andudnelfinavir). For the V82A variant, IC50 and Ki values for saquinavir and nelfinavirudivudwere not affected, whilst those for ritonavir and indinavir were 5- and 9-fold higherudthan the wild-type C-SA protease, respectively. Against the V82F/I84V variant,udhowever, the inhibition constants were drastically weaker and characterized by IC50udand Ki ratios ranging from 50 to 450. Isothermal titration calorimetry (ITC) was alsoudused to determine the binding energetics of saquinavir, ritonavir, indinavir andudnelfinavir to the wild-type C-SA, V82A and V82F/I84V HIV-1 protease. The V82Audmutation lowered the Gibbs energy of binding for the respective four clinicaludinhibitors by 0.4 kcal/mol, 1.3 kcal/mol, 1.5 kcal/mol and 0.6 kcal/mol, respectively,udrelative to the wild-type C-SA HIV-1 protease. The affinity of V82A HIV-1 proteaseudfor saquinavir, ritonavir, indinavir and nelfinavir (Kd = 1.85 nM, 2.00 nM, 12.70 nMudand 0.66 nM, respectively, at 25 °C) was in the range of 2- to 13-fold of magnitudeudweaker than that of the wild-type C-SA protein. The clinical inhibitors exhibited theudhighest binding affinity to both the wild-type and the V82A enzymes, but wereudextremely sensitive to the V82F/I84V mutation. The V82F/I84V mutant reduced theudbinding of saquinavir, ritonavir, indinavir and nelfinavir 117-, 1095-, 474- and 367-udfold, respectively. A drop in Kd values obtained for the V82F/I84V in association withudsaquinavir, ritonavir, indinavir and nelfinavir was consistent with a decrease ofudbetween 2.8 - 4.2 kcal/mol in ΔG, which is equivalent to at least 2 to 3 orders ofudmagnitude in binding affinity. Taken together, thermodynamic data indicated that theudV82A and V82F/I84V active site mutations in the C-SA subtype lower the affinity ofudthe first-generation inhibitors by making the binding entropy less positiveud(unfavorable) and making the enthalpy change slightly less favorable.
机译:摘要 ud艾滋病的流行程度已得到充分证明。已经证明, ud非洲在全世界感染HIV的人群中约占70%。控制艾滋病流行的努力主要集中在与艾滋病病毒的生物学,生物化学和结构生物学有关的研究以及艾滋病毒蛋白与新药之间的相互作用。艾滋病治疗中最具挑战性的问题之一是 udHIV会迅速产生耐药性变异。专门针对HIV-1蛋白酶(主要是B型)的逃避药物的设计已经进行了广泛的研究,这对于病毒,结构和酶蛋白的成熟至关重要。在该病毒的主要类别中,有10种亚型的HIV-1,其中C亚型占南非感染总数的95%。由于已经开发了针对B亚型的HIV-1抗逆转录病毒治疗药物,并且已经针对北美,西欧和澳大利亚的B亚型进行了测试,因此,一个重要的问题与这些药物对C亚型的治疗有效性有关。但是,目前对C亚型的抗药性突变了解甚少。因此,该研究忽略了南非Cudud-1 C亚型的两个活性位点突变(V82A和V82F / I84V)。从患者中循环的病毒种群中产生的蛋白酶(C-SA)。这些突变在 udB亚型的框架内具有很好的特征,并且已知会与目前临床 uduse中的大多数抑制剂产生交叉耐药性。蛋白工程技术被用于产生V82A和udV82F / I84V变体。使用野生型HIV-1 C-SA蛋白酶进行了比较研究。 V82A和V82F / I84V变体的光谱特性未显示相应变体蛋白的二级结构变化。 ud色氨酸和酪氨酸荧光表明所有三种蛋白在最大发射强度上的主要差异。尤其是,udV82F / I84V变体的荧光强度显着增强,表明在皮瓣区域/附近存在三级结构变化。两种突变都没有显着影响催化功能。两种变体还具有与野生型酶相当的相同的Km ud值。与野生型C-SA蛋白酶相比,V82A突变的催化效率和动力学常数降低了3.6倍,而udV82F / I84V突变的催化活性降低了6倍。在临床上使用四种抑制剂(沙奎那韦,利托那韦,茚地那韦和 udnelfinavir)进行了抑制研究。对于V82A变体,沙奎那韦和奈非那韦 udiv ud的IC50和Ki值不受影响,而利托那韦和茚地那韦的IC50和Ki值分别比野生型C-SA蛋白酶高5和9倍。然而,针对V82F / I84V变体,抑制常数却大大减弱,其IC50 ud和Ki比值介于50至450之间。等温滴定热量法(ITC)也用于确定沙奎那韦,利托那韦,茚地那韦和乌地那非对野生型C-SA,V82A和V82F / I84V HIV-1蛋白酶有作用。与野生型C-SA相比,V82A突变使相应的四种临床抑制剂的吉布斯结合能分别降低了0.4 kcal / mol,1.3 kcal / mol,1.5 kcal / mol和0.6 kcal / mol。 HIV-1蛋白酶。 V82A HIV-1蛋白酶对沙奎那韦,利托那韦,茚地那韦和奈非那韦的亲和力(在25°C下Kd分别为1.85 nM,2.00 nM,12.70 nM ud和0.66 nM)在2至13-量比野生型C-SA蛋白高两倍。临床抑制剂对野生型和V82A酶均表现出最高的结合亲和力,但对V82F / I84V突变极其敏感。 V82F / I84V突变体分别降低了沙奎那韦,利托那韦,茚地那韦和奈非那韦117-,1095-,474-和367-udfold的结合。与 udsaquinavir,利托那韦,茚地那韦和奈非那韦联合使用的V82F / I84V的Kd值下降与ΔG下降2.8-4.2 kcal / mol是一致的,这至少相当于2到3个数量级的ΔG。绑定关联性中的 udmagnitude。总之,热力学数据表明,C-SA亚型中的 udV82A和V82F / I84V活性位点突变通过使结合熵降低为正 ud(不利)并使焓变降低,从而降低了第一代抑制剂的亲和力。稍差一些。

著录项

  • 作者

    Mosebi Salerwe;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号