首页> 外文OA文献 >A polynomial chaos-based kalman filter approach for parameter estimation of mechanical systems
【2h】

A polynomial chaos-based kalman filter approach for parameter estimation of mechanical systems

机译:机械系统参数估计的基于混沌的多项式卡尔曼滤波方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mechanical systems operate under parametric and external excitation uncertainties. The polynomial chaos approach has been shown to be more efficient than Monte Carlo for quantifying the effects of such uncertainties on the system response. Many uncertain parameters cannot be measured accurately, especially in real time applications. Information about them is obtained via parameter estimation techniques. Parameter estimation for large systems is a difficult problem, and the solution approaches are computationally expensive. This paper proposes a new computational approach for parameter estimation based on the extended Kalman filter (EKF) and the polynomial chaos theory for parameter estimation. The error covariances needed by EKF are computed from polynomial chaos expansions, and the EKF is used to update the polynomial chaos representation of the uncertain states and the uncertain parameters. The proposed method is applied to a nonlinear four degree of freedom roll plane model of a vehicle, in which an uncertain mass with an uncertain position is added on the roll bar. The main advantages of this method are an accurate representation of uncertainties via polynomial chaos, a computationally efficient update formula based on EKF, and the ability to provide a posteriori probability densities of the estimated parameters. The method is able to deal with non-Gaussian parametric uncertainties. The paper identifies and theoretically explains a possible weakness of the EKF with approximate covariances: numerical errors due to the truncation in the polynomial chaos expansions can accumulate quickly when measurements are taken at a fast sampling rate. To prevent filter divergence, we propose to lower the sampling rate and to take a smoother approach where time-distributed observations are all processed at once. We propose a parameter estimation approach that uses polynomial chaos to propagate uncertainties and estimate error covariances in the EKF framework. Parameter estimates are obtained in the form of polynomial chaos expansion, which carries information about the a posteriori probability density function. The method is illustrated on a roll plane vehicle model.
机译:机械系统在参数和外部励磁不确定性下运行。多项式混沌方法已被证明比蒙特卡洛方法更有效地量化了此类不确定性对系统响应的影响。许多不确定参数无法准确测量,尤其是在实时应用中。有关它们的信息是通过参数估计技术获得的。大型系统的参数估计是一个难题,解决方案的计算量很大。本文提出了一种基于扩展卡尔曼滤波器(EKF)和多项式混沌理论的参数估计方法。根据多项式混沌展开来计算EKF所需的误差协方差,并将EKF用于更新不确定状态和不确定参数的多项式混沌表示。所提出的方法应用于车辆的非线性四自由度侧倾平面模型,其中在侧倾杆上增加了具有不确定位置的不确定质量。该方法的主要优点是可以通过多项式混沌来精确表示不确定性,基于EKF的高效计算更新公式以及提供估计参数的后验概率密度的能力。该方法能够处理非高斯参数不确定性。本文确定并从理论上解释了具有近似协方差的EKF的可能弱点:以快速采样率进行测量时,多项式混沌扩展被截断所导致的数值误差会迅速累积。为了防止过滤器发散,我们建议降低采样率并采取更平滑的方法,在该方法中,所有时间分布的观测值都将被立即处理。我们提出了一种参数估计方法,该方法使用多项式混沌来传播不确定性并估计EKF框架中的误差协方差。以多项式混沌扩展的形式获得参数估计,该估计携带有关后验概率密度函数的信息。在飞机平面模型上说明了该方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号