首页> 外文OA文献 >Characterizing the Interaction of the ATP Binding Cassette Transporters (G subfamily) with the Intracellular Protein Lipid Environment
【2h】

Characterizing the Interaction of the ATP Binding Cassette Transporters (G subfamily) with the Intracellular Protein Lipid Environment

机译:表征ATP结合盒式转运蛋白(G亚家族)与细胞内蛋白脂质环境的相互作用。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cholesterol is an essential molecule that mediates a myriad of critical cellular processes, such as signal transduction in eukaryotes, membrane fluidity, and steroidogenesis. As such it is not surprising that cholesterol homeostasis is tightly regulated, striking a precise balance between endogenous synthesis and regulated uptake/efflux to and from extracellular acceptors. In mammalian cells, sterol efflux is a key component of the homeostatic equation and is mediated by members of the ATP binding cassette (ABC) transporter superfamily. ATP-binding cassette (ABC) transporters represent a group of evolutionarily highly conserved cellular transmembrane proteins that mediate the ATP-dependent translocation of substrates across membranes. Members of this superfamily, ABCA1 and ABCG1, are key components of the reverse cholesterol transport pathway. ABCG1 acts in concert with ABCA1 to maximize the removal of excess cholesterol from cells by promoting cholesterol efflux onto mature and nascent HDL particles, respectively. To date, mammalian ABC transporters are exclusively associated with efflux of cholesterol. In Saccharomyces cerevisiae, we have demonstrated that the opposite (i.e inward) transport of sterol in yeast is also dependent on two ABC transporters (Aus1p and Pdr11p). This prompts the question what dictates directionality of sterol transport by ABC transporters. The main focus of this study is to define the parameters that result in sterol movement across membranes. The comparison between these contrasting states (outward v. inward transport of the same substrate) will allow us to dissect whether sterol transport across the plasma membrane is defined by the molecule (i.e. the ABC transporter) or by microenvironment (i.e. the status of other proteins and lipids) in which it resides. We have developed the model eukaryote Saccharomyces cerevisiae as a tool to understand the mechanisms that influence ABC-transporter mediated movement of sterols. Specifically, we expressed murine ABCG1 (mABCG1) in yeast and assessed how changes in the intracellular sterol environment affect movement of sterols by this transporter. We found that expression of mABCG1 is able to vary (both increase and decrease) the concentration of exogenous sterols in the cell in response to intracellular sterol changes. We also found that yeast members of the ABCG subfamily, Aus1p and Pdr11p are able to promote either influx of cholesterol or efflux of a cholesterol derivative depending on the sterol context of the cell. This is the first example of an ABC transporter mediating bi-directional transport. These data suggest that direction of transport is not a static property of the transporter but rather can adapt in response to changes in the intracellular microenvironment. In addition to sterols we also found that proteins in the microenvironment may also influence direction of transport. Specifically, we found that the yeast sterol esterifying enzyme Are2p, physically interacts with the ABC transporters Aus1p and Pdr11p. Furthermore, all three proteins were found to co-localize to detergent resistant membrane microdomains. Deletion of either ABC transporter resulted in Are2p re-localization from DRMs to a detergent soluble fraction as well as a significant decrease in the percent of sterol esterified. This phenomenon is evolutionarily conserved in the murine lung where ABCG1 and ACAT1 were observed to co-localize with flotillin-1, a marker of DRMs. We propose that co-localization and complex formation of sterol esterification enzymes and ABC transporters in DRMs reflects a novel mechanism that directs membrane sterols to the esterification reaction. The studies presented in this thesis provide evidence that direction of transport is not a static inherent property of the transporter, but rather that it is mutable and influenced by surrounding sterols and proteins. The data provided here offers further insight as to how ABC transporters move cholesterol from the membrane and therefore may provide a platform for innovative strategies to combat atherosclerosis.
机译:胆固醇是必不可少的分子,可介导大量关键的细胞过程,例如真核生物的信号转导,膜流动性和类固醇生成。因此,严格控制胆固醇稳态,在内源性合成与细胞外受体之间调节的摄取/流出之间达到精确的平衡也就不足为奇了。在哺乳动物细胞中,固醇流出是体内稳态方程的关键组成部分,由ATP结合盒(ABC)转运蛋白超家族的成员介导。 ATP结合盒(ABC)转运蛋白代表一组进化上高度保守的细胞跨膜蛋白,可介导ATP依赖性底物跨膜转运。这个超家族的成员ABCA1和ABCG1是胆固醇逆向转运途径的关键组成部分。 ABCG1与ABCA1协同作用,通过促进胆固醇分别外流到成熟的和新生的HDL颗粒上,最大程度地从细胞中去除多余的胆固醇。迄今为止,哺乳动物ABC转运蛋白仅与胆固醇外流有关。在酿酒酵母中,我们已经证明,酵母中固醇的相反(即向内)运输也取决于两个ABC转运蛋白(Aus1p和Pdr11p)。这提示了一个问题,该问题决定了ABC转运蛋白固醇转运的方向性。这项研究的主要重点是确定导致甾醇跨膜运动的参数。这些对比状态之间的比较(同一底物的向外v。向内的运输)将使我们能够剖析固醇跨质膜的运输是由分子(即ABC转运蛋白)还是由微环境(即其他蛋白质的状态)确定的和脂质)。我们已经开发了真核生物酿酒酵母模型,作为一种工具来了解影响ABC转运蛋白介导的固醇运动的机制。具体来说,我们在酵母中表达了鼠ABCG1(mABCG1),并评估了细胞内固醇环境中的变化如何通过该转运蛋白影响固醇的运动。我们发现,mABCG1的表达能够响应细胞内固醇变化而改变(增加和减少)细胞中外源性固醇的浓度。我们还发现,ABCG亚家族的酵母成员Aus1p和Pdr11p能够促进胆固醇的流入或胆固醇衍生物的外排,具体取决于细胞的甾醇情况。这是ABC转运体介导双向运输的第一个示例。这些数据表明运输的方向不是运输者的静态属性,而是可以适应细胞内微环境的变化而适应。除了固醇外,我们还发现微环境中的蛋白质也可能影响运输方向。具体而言,我们发现酵母固醇酯化酶Are2p与ABC转运蛋白Aus1p和Pdr11p发生物理相互作用。此外,发现所有三种蛋白质共定位于抗洗涤剂的膜微区。删除任一ABC转运蛋白均导致Are2p从DRM重新定位为去污剂可溶级分,以及酯化固醇的百分比显着降低。这种现象在鼠肺中是进化上保守的,在鼠肺中观察到ABCG1和ACAT1与DRM的标志物flotillin-1共定位。我们提出在DRM中固醇酯化酶和ABC转运蛋白的共定位和复合物形成反映了一种新颖的机制,该机制将膜固醇导向酯化反应。本文提出的研究提供了证据,表明运输方向不是运输蛋白的静态固有特性,而是可变的,并且受周围固醇和蛋白质的影响。此处提供的数据提供了有关ABC转运蛋白如何将胆固醇从膜中移出的更多见解,因此可以为抗击动脉粥样硬化的创新策略提供平台。

著录项

  • 作者

    Gulati Sonia;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号