Equation spread thermal was an issued which on the equation of differentially partialparabolic. For finished that equation, one method used for were different method to whichimplicit scheme. Degradation of implicit scheme in equation spread thermal produced linierequation system form with matrix was tridiagonal matrix. Linier equation system numericallyprocessed was Gauss-Jordan method. If Step Measurement ( t and x ) on equation spreadthermal was very small, whereas observing interval and time was bigger. It will made bigmeasure of linier equation system. Finally, completion execution time with Gauss-Jordanmethod was longer. To reduce completion execution time linier equation system with thoseGauss-Jordan methods, it necessary to putted another method, which is Thomas method. Theefficient step was to decrease linier equation system measure with Thomas method and a newlinier equation system finished with Gauss-Jordan method. Results of the research showedthat execution time between combined method of Thomas method and Gauss-Jordan methodin accordance Gauss-Jordan had significantly different. The bigger different linier equationsystem the bigger time they operated. For example, to system matrix 2525 x 2525 the different03: 05: 760 compared to 33: 55: 490. In this research we also discussed algorithm complexityand study results showed that 2525 x 2525 mix of Thomas method and Gauss-Jordan methodis 2.031.105.803 loop and with Gauss-Jordan loop 16.164.813.274.
展开▼
机译:在微分偏抛物线方程上发布了方程式扩散热方程。为了完成该方程,所用的一种方法是与隐式方案不同的方法。具有矩阵的方程扩展热产生线性方程组形式的隐式方案的退化为三对角矩阵。数值处理的Linier方程组采用Gauss-Jordan方法。如果对方程式地热的阶跃测量(t和x)很小,而观测间隔和时间则更大。它将成为线性方程组的大尺度。最终,高斯-乔丹方法的完成执行时间更长。为了使用Gauss-Jordan方法减少线性方程组的完成执行时间,有必要提出另一种方法,即Thomas方法。有效的步骤是用Thomas方法减少线性方程组度量,并用Gauss-Jordan方法完成一个新线性方程组。研究结果表明,托马斯方法与高斯-乔丹方法相结合的执行时间与高斯-乔丹方法的执行时间显着不同。不同的线性方程组越大,它们的运行时间就越长。例如,将系统矩阵2525 x 2525的不同比例为03:05:760与33:55:490进行比较。在本研究中,我们还讨论了算法的复杂性,研究结果表明,Thomas方法和Gauss-Jordan方法的2525 x 2525混合为2.031.105.803。高斯-乔丹循环16.164.813.274。
展开▼