首页> 外文OA文献 >A dynamic component model for forecasting high-dimensional realized covariance matrices
【2h】

A dynamic component model for forecasting high-dimensional realized covariance matrices

机译:用于预测高维已实现协方差矩阵的动态组件模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Multiplicative MIDAS Realized DCC (MMReDCC) model of Bauwens et al. decomposes the dynamics of the realized covariance matrix of returns into short-run transitory and long-run secular components where the latter reflects the effect of the continuously changing economic conditions. The model allows to obtain positive-definite forecasts of the realized covariance matrices but, due to the high number of parameters involved, estimation becomes unfeasible for large cross-sectional dimensions. Our contribution in this paper is twofold. First, in order to obtain a computationally feasible estimation procedure, we propose an algorithm that relies on the maximization of an iteratively re-computed moment-based profile likelihood function. We assess the finite sample properties of the proposed algorithm via a simulation study. Second, we propose a bootstrap procedure for generating multi-step ahead forecasts from the MMReDCC model. In an empirical application on realized covariance matrices for fifty equities, we find that the MMReDCC not only statistically outperforms the selected benchmarks in-sample, but also improves the out-of-sample ability to generate accurate multi-step ahead forecasts of the realized covariances.
机译:Bauwens等人的可乘MIDAS实现的DCC(MMReDCC)模型。将已实现的收益协方差矩阵的动力学分解为短期的短暂和长期的长期成分,后者反映了不断变化的经济条件的影响。该模型允许获得已实现协方差矩阵的正定预测,但是由于涉及的参数数量众多,因此对于大横截面尺寸而言,进行估算变得不可行。我们在本文中的贡献是双重的。首先,为了获得在计算上可行的估计程序,我们提出了一种算法,该算法依赖于迭代重新计算的基于矩的轮廓似然函数的最大化。我们通过仿真研究评估了所提出算法的有限样本属性。其次,我们提出了一个引导程序,用于从MMReDCC模型生成多步提前预测。在针对五十个股票的已实现协方差矩阵的经验应用中,我们发现MMReDCC不仅在统计上优于样本中选定的基准,而且还提高了样本外能力,可生成已实现协方差的准确多步提前预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号