首页> 外文OA文献 >Effective insect recognition using a stacked autoencoder with maximum correntropy criterion
【2h】

Effective insect recognition using a stacked autoencoder with maximum correntropy criterion

机译:使用具有最大熵准则的堆叠式自动编码器进行有效的昆虫识别

摘要

Throughout the history, insects had been intimately connected to humanity, in both positive and negative ways. Insects play an important part in crop pollination, on the other hand, some of them spread diseases that kill millions of people every year. Effective control of harmful insects while having little impact to beneficial insects and environment is extremely important. Recently, an intelligent trap that uses laser sensors was presented to control the population of target insects. The device could record and analyze sensor signals when an insect passes through the trap and make quick decisions whether to catch it or not. The effectiveness of the trap relies on the correct choice of classification algorithm to perform the insect detection. In this paper, we propose to use a deep neural network with maximum correntropy criterion (MCC) for reliable classification of insects in real-time. Experimental results show that, deep networks are effective for learning stable features from brief insect passage signals. By replacing the mean square error cost with MCC, the robustness of auto encoders against noise is improved significantly and robust features could be learned. The method is tested on five species of insects and a total of 5325 passages. High classification accuracy of 92.1 % is achieved. Compared with previously applied methods, better classification performance is obtained using only 10% of the computation time. Therefore, our method is efficient and reliable for online insect detection.
机译:纵观整个历史,昆虫一直以积极和消极的方式与人类紧密相连。昆虫在农作物授粉中起着重要作用,另一方面,其中一些传播的疾病每年杀死数百万人。有效控制有害昆虫同时对有益昆虫和环境的影响很小。最近,有人提出了一种使用激光传感器的智能陷阱,以控制目标昆虫的数量。当昆虫通过诱捕器时,该设备可以记录和分析传感器信号,并快速决定是否捕获它。诱捕器的有效性依赖于正确选择分类算法来执行昆虫检测。在本文中,我们建议使用具有最大熵准则(MCC)的深度神经网络对昆虫进行实时可靠分类。实验结果表明,深度网络对于从短暂的昆虫通过信号中学习稳定特征是有效的。通过用MCC代替均方误差成本,可以大大提高自动编码器抗噪声的鲁棒性,并可以学习鲁棒性。该方法在五种昆虫上共进行了5325次传代试验。实现了92.1%的高分类精度。与以前应用的方法相比,仅使用10%的计算时间即可获得更好的分类性能。因此,我们的方法对于在线昆虫检测是有效而可靠的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号