首页> 外文期刊>IEEE Transactions on Circuits and Systems. II, Express Briefs >Robust Randomized Autoencoder and Correntropy Criterion-Based One-Class Classification
【24h】

Robust Randomized Autoencoder and Correntropy Criterion-Based One-Class Classification

机译:坚固的随机自动化器和基于矫正标准的单级分类

获取原文
获取原文并翻译 | 示例

摘要

Hierarchical neural network based one-class anomaly detection algorithms generally rely on stacked autoencoders (AEs) for feature learning. But existing AEs are not specifically designed to exploit the discriminative characteristics of target data in one-class classification (OCC), and thus may lead to poor generalization performance. In this brief, a novel randomized AE that imposes the constraint of the within-class scatter information is developed in feature learning. The correntropy criterion is applied to replace the mean square error criterion (MSE) to enhance the algorithm performance in outlier and noise rejection. The algorithm is further extended to kernel learning to improve its generalization capability. Experiments on benchmark datasets are carried out to show the effectiveness of the proposed algorithm.
机译:基于分层神经网络的一类异常检测算法通常依赖于堆叠的AutoEncoders(AES)进行特征学习。但是现有的AES没有专门设计用于利用一个阶级分类(OCC)中目标数据的辨别特性,因此可能导致普遍性差。在这种简述中,在特征学习中开发了一种提高级联分散信息的约束的新型随机AE。施加正管内标准以替换均方误差标准(MSE)以增强异常值和噪声抑制的算法性能。该算法还扩展到内核学习,以提高其泛化能力。执行基准数据集的实验以显示所提出的算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号