首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Maximum Correntropy Criterion for Robust Face Recognition
【24h】

Maximum Correntropy Criterion for Robust Face Recognition

机译:用于人脸识别的最大熵准则

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a sparse correntropy framework for computing robust sparse representations of face images for recognition. Compared with the state-of-the-art l^1norm-based sparse representation classifier (SRC), which assumes that noise also has a sparse representation, our sparse algorithm is developed based on the maximum correntropy criterion, which is much more insensitive to outliers. In order to develop a more tractable and practical approach, we in particular impose nonnegativity constraint on the variables in the maximum correntropy criterion and develop a half-quadratic optimization technique to approximately maximize the objective function in an alternating way so that the complex optimization problem is reduced to learning a sparse representation through a weighted linear least squares problem with nonnegativity constraint at each iteration. Our extensive experiments demonstrate that the proposed method is more robust and efficient in dealing with the occlusion and corruption problems in face recognition as compared to the related state-of-the-art methods. In particular, it shows that the proposed method can improve both recognition accuracy and receiver operator characteristic (ROC) curves, while the computational cost is much lower than the SRC algorithms.
机译:在本文中,我们提出了一个稀疏的熵框架,用于计算用于识别的人脸图像的鲁棒稀疏表示。与基于最新的基于l ^ 1norm的稀疏表示分类器(SRC)假定噪声也具有稀疏表示相比,我们的稀疏算法是基于最大熵准则开发的,该准则对离群值。为了开发一种更易于处理和实用的方法,我们特别对最大熵准则中的变量施加了非负约束,并开发了一种半二次优化技术,以交替方式近似最大化目标函数,从而使复杂的优化问题成为简化为通过每次迭代具有非负约束的加权线性最小二乘问题来学习稀疏表示。我们广泛的实验表明,与相关的现有技术方法相比,该方法在处理人脸识别中的遮挡和腐败问题方面更加强大和有效。特别地,它表明所提出的方法可以同时提高识别精度和接收者操作员特征(ROC)曲线,而计算成本远低于SRC算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号