首页> 外文OA文献 >A compact finite differences exact projection method for theudNavier–Stokes equations on a staggered grid with fourth-orderudspatial precision
【2h】

A compact finite differences exact projection method for theudNavier–Stokes equations on a staggered grid with fourth-orderudspatial precision

机译:ud的紧致有限差分精确投影方法具有四阶 ud的交错网格上的Navier–Stokes方程空间精度

摘要

An exact projection method for the numerical solution of the incompressible Navier–Stokes equations isuddevised. In all spatial discretizations, fourth-order compact finite differences are used, including domainudboundaries and the Poisson equation that arises from the projection method. The integration in time isudcarried out by a second-order Adams–Bashforth scheme. The discrete incompressibility constraint isudimposed exactly (up to machine precision) by a simple and efficient discretization of the Poisson equation.udSpatial and temporal accuracies, for both velocity and pressure, are verified through the use of analyticaludand manufactured solutions. The results show that the method converges with fourth-orderudaccuracy in space and second-order accuracy in time, for both velocity and pressure. Additionally, twoudpopular benchmark problems, the flow over a backward facing step and the lid-driven cavity flow, areudused to demonstrate the robustness and correctness of the code.
机译:为不可压缩的Navier–Stokes方程的数值解提供了一种精确的投影方法。在所有空间离散化中,都使用四阶紧致有限差分,包括域边界和由投影方法产生的泊松方程。时间的积分由二阶Adams–Bashforth方案进行。通过简单有效的泊松方程离散化,精确地(不超过机器精度)消除了离散的不可压缩约束。 ud通过使用解析的 udand制造的解决方案来验证速度和压力的时空精度。结果表明,该方法在速度和压力方面都收敛于空间的四阶精确度和时间的二阶精度。此外,还使用了两个普遍的基准问题,即朝后的台阶上的流动和盖子驱动的空腔流动,以证明代码的鲁棒性和正确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号