首页> 美国卫生研究院文献>other >A Newton–Krylov method with an approximate analytical Jacobian for implicit solution of Navier–Stokes equations on staggered overset-curvilinear grids with immersed boundaries
【2h】

A Newton–Krylov method with an approximate analytical Jacobian for implicit solution of Navier–Stokes equations on staggered overset-curvilinear grids with immersed boundaries

机译:带有近似解析雅可比行列的Newton-Krylov方法可解决带浸入边界的交错过弯曲线网格上Navier-Stokes方程的隐式解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The explicit and semi-implicit schemes in flow simulations involving complex geometries and moving boundaries suffer from time-step size restriction and low convergence rates. Implicit schemes can be used to overcome these restrictions, but implementing them to solve the Navier-Stokes equations is not straightforward due to their non-linearity. Among the implicit schemes for nonlinear equations, Newton-based techniques are preferred over fixed-point techniques because of their high convergence rate but each Newton iteration is more expensive than a fixed-point iteration. Krylov subspace methods are one of the most advanced iterative methods that can be combined with Newton methods, i.e., Newton-Krylov Methods (NKMs) to solve non-linear systems of equations. The success of NKMs vastly depends on the scheme for forming the Jacobian, e.g., automatic differentiation is very expensive, and matrix-free methods without a preconditioner slow down as the mesh is refined. A novel, computationally inexpensive analytical Jacobian for NKM is developed to solve unsteady incompressible Navier-Stokes momentum equations on staggered overset-curvilinear grids with immersed boundaries. Moreover, the analytical Jacobian is used to form preconditioner for matrix-free method in order to improve its performance. The NKM with the analytical Jacobian was validated and verified against Taylor-Green vortex, inline oscillations of a cylinder in a fluid initially at rest, and pulsatile flow in a 90 degree bend. The capability of the method in handling complex geometries with multiple overset grids and immersed boundaries is shown by simulating an intracranial aneurysm. It was shown that the NKM with an analytical Jacobian is 1.17 to 14.77 times faster than the fixed-point Runge-Kutta method, and 1.74 to 152.3 times (excluding an intensively stretched grid) faster than automatic differentiation depending on the grid (size) and the flow problem. In addition, it was shown that using only the diagonal of the Jacobian further improves the performance by 42 – 74% compared to the full Jacobian. The NKM with an analytical Jacobian showed better performance than the fixed point Runge-Kutta because it converged with higher time steps and in approximately 30% less iterations even when the grid was stretched and the Reynold number was increased. In fact, stretching the grid decreased the performance of all methods, but the fixed-point Runge-Kutta performance decreased 4.57 and 2.26 times more than NKM with a diagonal Jacobian when the stretching factor was increased, respectively. The NKM with a diagonal analytical Jacobian and matrix-free method with an analytical preconditioner are the fastest methods and the superiority of one to another depends on the flow problem. Furthermore, the implemented methods are fully parallelized with parallel efficiency of 80–90% on the problems tested. The NKM with the analytical Jacobian can guide building preconditioners for other techniques to improve their performance in the future.
机译:涉及复杂几何形状和移动边界的流动模拟中的显式和半隐式方案受时间步长限制和低收敛速度的困扰。可以使用隐式方案来克服这些限制,但是由于其非线性,实现它们以解决Navier-Stokes方程并不是一件容易的事。在非线性方程的隐式方案中,基于牛顿的技术比定点技术更受青睐,因为它们的收敛速度高,但是每个牛顿迭代都比定点迭代昂贵。 Krylov子空间方法是最先进的迭代方法之一,可以与Newton方法(即Newton-Krylov方法(NKM))结合使用来求解非线性方程组。 NKM的成功在很大程度上取决于形成雅可比行列的方案,例如,自动微分非常昂贵,并且没有预条件的无矩阵方法会随着网格的细化而变慢。开发了一种新颖的,计算成本低廉的NKM分析雅可比行列式,以解决带浸入边界的交错式过弯曲线网格上的非定常不可压缩Navier-Stokes动量方程。此外,解析雅可比矩阵用于形成无矩阵方法的预处理器,以提高其性能。通过分析泰勒-格林涡旋,最初在静止状态下的流体中的汽缸在线振荡以及90度弯曲的脉动流,对带有解析雅可比行列式的NKM进行了验证和验证。通过模拟颅内动脉瘤显示了该方法处理具有多个重叠网格和浸没边界的复杂几何形状的能力。结果表明,具有解析雅可比行列式的NKM比定点Runge-Kutta方法快1.17至14.77倍,比自动微分(取决于网格(大小))快1.74至152.3倍(不包括密集拉伸网格)。流量问题。此外,结果表明,与完整的Jacobian相比,仅使用Jacobian的对角线可将性能进一步提高42 – 74%。具有解析雅可比行列式的NKM显示出比定点Runge-Kutta更好的性能,因为它收敛了更高的时间步长,即使网格被拉伸并且雷诺数增加了,迭代次数也减少了约30%。实际上,拉伸网格会降低所有方法的性能,但是当拉伸因子增加时,定点Runge-Kutta性能分别比使用对角Jacobian的NKM分别降低4.57和2.26倍。带有对角雅可比分析的NKM和带有分析预处理器的无矩阵方法是最快的方法,一种与另一种的优越性取决于流动问题。此外,已实施的方法在测试的问题上完全并行化,并行效率为80–90%。具有分析雅可比行列式的NKM可以指导其他技术的建筑物预处理器在将来提高其性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号