首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Semi-implicit discontinuous Galerkin methods for the incompressible Navier-Stokes equations on adaptive staggered Cartesian grids
【24h】

Semi-implicit discontinuous Galerkin methods for the incompressible Navier-Stokes equations on adaptive staggered Cartesian grids

机译:自适应交错笛卡尔网格上不可压缩Navier-Stokes方程的半隐式间断Galerkin方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper a new high order semi-implicit discontinuous Galerkin method (SI-DG) is presented for the solution of the incompressible Navier-Stokes equations on staggered space-time adaptive Cartesian grids (AMR) in two and three space dimensions. The pressure is written in the form of piecewise polynomials on the main grid, which is dynamically adapted within a cell-by-cell AMR framework. According to the time dependent main grid, different face-based spatially staggered dual grids are defined for the piece-wise polynomials of the respective velocity components. Although the resulting adaptive staggered grids are more complex than classical uniform Cartesian meshes, the numerical scheme can still be written in a rather compact form. Thanks to the use of a tensor-product formulation for the definition of the nodal basis in the d-dimensional space (d = 2, 3), all the discrete operators can be efficiently written as a combination of linear one-dimensional operators acting in the d space directions separately.
机译:本文提出了一种新的高阶半隐式间断Galerkin方法(SI-DG),用于在两个和三个空间维上交错的时空自适应笛卡尔网格(AMR)上的不可压缩Navier-Stokes方程的求解。压力以分段多项式的形式写在主网格上,该网格可在逐个单元的AMR框架内动态调整。根据时间相关的主网格,为各个速度分量的分段多项式定义了不同的基于面部的空间交错双网格。尽管生成的自适应交错网格比经典的统一笛卡尔网格更复杂,但是数值方案仍然可以以相当紧凑的形式编写。由于使用张量积公式来定义d维空间(d = 2,3)中的节点基础,因此所有离散算子都可以有效地写为线性一维算子的组合,从而在d空间方向分开。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号