首页> 外文OA文献 >The NEST neuronal network simulator: Performance optimization techniques for high performance computing platforms
【2h】

The NEST neuronal network simulator: Performance optimization techniques for high performance computing platforms

机译:NEST神经元网络模拟器:高性能计算平台的性能优化技术

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

NEST (http://www.nest-initiative.org) is a spiking neural network simulator used in computational neuroscience to simulate interaction dynamics between neurons. It runs small networks on local machines and large brain-scale networks on the world’s leading supercomputers. To reach both of these scales, NEST is hybrid-parallel, using OpenMP for shared memory parallelism and MPI to handle distributed memory parallelism. To extend simulations from short runs of 109 neurons toward long runs of 1011 neurons, increased performance is essential. That performance goal can only be achieved through a feedback loop between modeling of the software, profiling to identify bottlenecks, and improvement to the code-base. HPCToolkit and SCORE-P toolkit were used to profile performance for a standard benchmark, the balanced Brunel network. We have additionally developed a performance model of the simulation stage of neural dynamics after network initialization and proxy code used to reduce the resources required to model production runs. We have pursued a semi-empirical approach by specifying a theoretical model with free parameters specified by fitting the model to empirical data (see figure). Thus we can extrapolate the scaling efficiency of NEST and by comparing components, identify algorithmic bottlenecks and performance issues which only show up at large simulation sizes. Performance issues identified include: 1) buffering of random number generation lead to extended wait times at MPI barriers; and 2) inefficiencies in the construction of time stamps consumed inordinate computational resources during spike delivery. Feature 1 appears primarily for smaller simulations, while feature 2 is only apparent at the current limit of neural networks on the largest supercomputing and can only be identified through the use of profiling in light of clear computing models. By improving the underlying code, NEST performance has been significantly improved (on the order of 25% for each feature) and we have improved weak-scaling for simulations at HPC scales.
机译:NEST(http://www.nest-initiative.org)是一种尖峰神经网络模拟器,用于计算神经科学,以模拟神经元之间的交互动力学。它在本地计算机上运行小型网络,并在世界领先的超级计算机上运行大型大脑规模的网络。为了达到这两个规模,NEST是混合并行的,使用OpenMP共享内存并行性,使用MPI处理分布式内存并行性。为了将模拟从109个神经元的短期扩展到1011个神经元的长期扩展,提高性能至关重要。该性能目标只能通过在软件建模,进行性能分析以识别瓶颈和改进代码库之间的反馈回路来实现。 HPCToolkit和SCORE-P工具包用于描述标准基准(平衡的Brunel网络)的性能。在网络初始化和用于减少生产运行建模所需资源的代理代码之后,我们还开发了神经动力学仿真阶段的性能模型。我们通过指定具有自由参数的理论模型来追求半经验方法,这些参数通过将模型拟合到经验数据来指定(参见图)。因此,我们可以推断NEST的缩放效率,并通过比较组件,确定算法瓶颈和性能问题,这些问题只会在较大的仿真规模下才会出现。确定的性能问题包括:1)缓存随机数生成会导致MPI障碍的等待时间延长; 2)时间戳构建效率低下,在尖峰交付期间消耗了过多的计算资源。特征1主要出现在较小的仿真中,而特征2仅在最大超级计算的神经网络当前限制下才可见,并且只能根据清晰的计算模型通过使用剖析来识别。通过改进基础代码,NEST性能得到了显着改善(每个功能的量级为25%左右),并且针对HPC规模的仿真,我们改善了弱缩放。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号