首页> 外文OA文献 >Scanning tunneling microscopy of singlemolecule magnets and hybrid-molecular magnets: Two approaches to molecular spintronics
【2h】

Scanning tunneling microscopy of singlemolecule magnets and hybrid-molecular magnets: Two approaches to molecular spintronics

机译:单分子磁体和混合分子磁体的扫描隧道显微镜:分子自旋电子学的两种方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Molecular spintronics attempts both to improve the properties of current electronic devicesand develop completely new devices by combining the advantages of molecular electronicsand spintronics into one research eld. Investigating and evaluating the properties ofmolecular magnets and to eventually employ them in devices is a major goal of molecularspintronics. Two dierent kinds of molecular magnets are promising candidates for devicedevelopment: Single-molecule magnets (SMMs) and hybrid-molecular magnets. Both areideal building blocks for spintronic devices, such as spin-transistors and spin-valves. Howeverthe fabrication of devices requires the deposition on surfaces. Due to the interaction betweenmolecules and surfaces being highly complex, only a fundamental understanding of thesephenomena will eventually lead to the succesful application of molecular magnets in devices.To improve the understanding of the molecule-surface interaction both approacheshave been investigated experimentally in this dissertation. Since surfaces are prone tocontamination, these experiments were conducted in ultra-high vacuum. To gain moreinsight in such systems and to understand the adsorption phenomena, their structural,electronic and magnetic properties were studied on a microscopic scale with scanningtunneling microscopy (STM) and spectroscopy (STS).The interaction between SMMs and surfaces was exemplarily studied by depositing fNi4gon Au(111). fNi4g is a recently synthesized SMM where a cubane fNi II4 (3Cl)4g core isresponsible for the magnetic properties [1]. The magnetic core is protected by organic ligandsexhibiting a thioether surface functionalization. Since thioether functionalized ligands hadbeen widely neglected in earlier experiments, the deposition of fNi4g on Au(111) fromsolution and the resulting adsorption phenomena were studied by XPS and STM. Bothmethods revealed strong evidence for a ligand detachment during adsorption. The magneticcore however might be still structurally intact as indicated by XPS. Attempts to desorbthe detached ligands and to subsequently image the magnetic core with STM by in-situpost-annealing were unsuccessful. Instead the post-annealing lead to the decomposition ofthe magnetic core and to a most likely sulfur induced reconstruction of the Au(111) surface.As a results of this study new strategies have been proposed to avoid the ligand detachmentin future experiments.In a complementary approach the interaction between molecules and surfaces is exploitedfor the formation of hybrid-molecular magnets. Here, comparatively stable non-magneticmolecules are deposited on magnetic surfaces. The interaction leads to a magnetic moleculesurfacehybrid, or "hybrid-molecular magnet".This approach requires a magnetic substrate. For this task the well known Fe/W(110)system was chosen and charaterized by spin-polarized STM (SP-STM). The fabrication ofsuitable magnetic tips for SP-STM is a well known challenge due to its poor predictabilityand reproducibilty. The characterization of tips was performed by SP-STM measurementson the Fe/W(110) system and reveals that Cr-coated tips exhibit the required out-of-planemagnetization direction for the following experiments on hybrid-molecular magnet systems.Furthermore an eective spin polarization of up to 12.4% for the whole tip-sample tunneljunction was found.
机译:分子自旋电子学试图通过结合分子电子学和自旋电子学的优势,来改善当前电子设备的性能并开发全新的设备。研究和评估分子磁体的性能,并最终将其用于设备中是分子自旋电子学的主要目标。两种不同类型的分子磁体有望成为器件开发的候选对象:单分子磁体(SMM)和混合分子磁体。这两种都是自旋电子器件(如自旋晶体管和自旋阀)的理想构建基块。但是,器件的制造需要在表面上进行沉积。由于分子与表面之间的相互作用非常复杂,因此,只有对这些现象有一个基本的了解,才能最终成功地将分子磁体应用到设备中。为了提高对分子-表面相互作用的理解,本文对两种方法进行了实验研究。由于表面容易被污染,因此这些实验是在超高真空下进行的。为了进一步了解此类系统并了解其吸附现象,使用扫描隧道显微镜(STM)和光谱(STS)在微观尺度上研究了它们的结构,电子和磁性,并通过沉积fNi4gon来研究SMM与表面之间的相互作用。金(111)。 fNi4g是最近合成的SMM,其中,古巴fNi II4(3Cl)4g磁芯负责磁性[1]。磁芯由具有硫醚表面功能化作用的有机配体保护。由于硫醚官能化的配体在早期实验中被广泛忽略,因此通过XPS和STM研究了fNi4g在溶液中在Au(111)上的沉积以及由此产生的吸附现象。两种方法都揭示了吸附过程中配体脱离的有力证据。但是,如XPS所示,磁芯可能在结构上仍然完好无损。尝试解吸分离的配体并随后通过原位后退火用STM对磁芯进行成像的尝试均未成功。取而代之的是,后退火会导致磁芯的分解,并最有可能导致硫诱导的Au(111)表面的重建。作为这项研究的结果,在未来的实验中提出了避免配体脱离的新策略。分子与表面之间的相互作用的研究方法被用于混合分子磁体的形成。在此,相对稳定的非磁性分子沉积在磁性表面上。相互作用导致磁性分子表面杂化或“杂化分子磁体”。这种方法需要磁性基质。为此,选择了众所周知的Fe / W(110)系统,并通过自旋极化STM(SP-STM)对其进行了表征。由于SP-STM的可预测性和可重复性差,因此制造适合SP-STM的磁吸头是一项众所周知的挑战。针尖的表征是通过Fe / W(110)系统的SP-STM测量进行的,结果表明,Cr涂层的针尖表现出以下分子杂化磁体系统实验所需的面外磁化方向。发现整个尖端样品隧道结的极化度高达12.4%。

著录项

  • 作者

    Hess Volkmar;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号