首页> 外文OA文献 >Quantitative scanning tunneling spectroscopy of non-polar III-V compound semiconductor surfaces
【2h】

Quantitative scanning tunneling spectroscopy of non-polar III-V compound semiconductor surfaces

机译:非极性III-V化合物半导体表面的定量扫描隧道光谱

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The investigation of non-polar III-V semiconductor surfaces by cross-section scanning tunneling microscopy (X-STM) and spectroscopy (X-STS) with and without laser excitation may reveal physical effects that could have a major impact on novel electrical devices, such as light-emitting diodes, lasers, and solar cells. For a quantitative analysis and hence the extraction of physical properties, a quantitative description of the tunnel current is needed, taking into account the tipinduced band bending and light-excited carriers. Laser-excited X-STS on non-polar p-GaAs(110) surfaces show an increased tunnel current under illumination for negative sample voltages. For positive voltages, no difference between the current measured under illuminated and dark conditions is detectable. Qualitatively, this result is attributed to the generation of light-excited minority carriers (electrons), screening the electric field at the sample surface and tunneling from the sample into the tip at negative voltages. Here, a quantitative description of the tunnel current is developed, employing a finite-difference algorithm that solves not only the Poisson equation, but also the continuity equations of electrons and holes. Light-excited carriers are introduced in the electrostatic part of the calculation as well as in the derivation of the tunnel current by generation and recombination terms and a modified tunnel model, respectively. Using the irradiation of the laser beam as only fitting parameter for the current under illumination, good agreement between the measurement and the calculation is obtained, validating the accuracy of the developed model. Furthermore, it is found that the GaAs(110) C3 surface state can be charged by light-excited electrons, limiting the band bending. Focusing on nitride-based semiconductors, X-STS on n-GaN(1010) surfaces and the application of the newly developed tunnel current simulation reveal a polarity depended Fermi level pinning: The intrinsic empty surface state in the fundamental band gap pins the Fermi level at small positive voltages only, but not at negative voltages. In equilibrium, the surface state is shifted below the Fermi energy by band bending for negative voltages. Hence, it is expected to be partially filled. However, in non-equilibrium, when electrons can tunnel from the surface state into the tip, one has to take into account the rates of the charging and discharging processes. It is found that the optical transition of electrons from the conduction band to the surface state (charging process) is prohibited by quantum mechanical selection rules due to the same orbital character of the surface state and the conduction band minimum. Hence, the surface state does not reach its equilibrium occupation and therefore does not pin. Furthermore, InN layers grown on GaN(0001) are probed by combining the advantages of X-STM, X-STS, the simulation model, and transmission electron microscopy (TEM). The lattice mismatch of GaN and InN is found to be dissipated directly at the GaN/InN interface by introducing a dislocation network. As a result, the overgrown InN layer is of highest quality with a low defect concentration. On the m-plane cleavage surface, the interface dislocations induce steps in [0001] direction in the InN region. These steps lead to an extrinsic pinning of the Fermi level. An electron accumulation layer near the surface (previously observed on low-quality InN layers), induced by intrinsic surface states, is not observed on the high-quality samples. Thus, the electron accumulation layer is not an intrinsic property and hence InN appears to be as conventional as other III-V semiconductors.
机译:通过截面扫描隧道显微镜(X-STM)和光谱仪(X-STS)在有和没有激光激发的情况下对非极性III-V半导体表面的研究,可能会发现可能会对新型电子设备产生重大影响的物理效应,例如发光二极管,激光器和太阳能电池。为了进行定量分析,进而提取物理性质,需要对隧道电流进行定量描述,同时考虑到尖端引起的能带弯曲和光激发的载流子。在非极性p-GaAs(110)表面上的激光激发X-STS在负采样电压照射下显示出增加的隧道电流。对于正电压,在光照和黑暗条件下测得的电流之间没有差异。定性地,该结果归因于光激发的少数载流子(电子)的产生,屏蔽样品表面的电场并在负电压下从样品隧穿到尖端。在这里,使用有限差分算法开发了隧道电流的定量描述,该算法不仅可以求解泊松方程,而且可以求解电子和空穴的连续性方程。在计算的静电部分以及通过生成项和复合项以及改进的隧道模型分别推导隧道电流时,会引入光激发的载流子。使用激光束的照射作为照明电流的唯一拟合参数,可以在测量和计算之间取得良好的一致性,从而验证了所开发模型的准确性。此外,发现GaAs(110)C3表面态可以被光激发电子带电,从而限制了能带弯曲。专注于氮化物基半导体,n-GaN(1010)表面上的X-STS和新开发的隧道电流模拟的应用揭示了取决于极性的费米能级钉扎:基带隙中的固有空表面状态将费米能级钉扎仅在小的正电压下,而不是在负电压下。在平衡状态下,由于负电压的能带弯曲,表面状态在费米能量以下移动。因此,预计将被部分填充。但是,在非平衡状态下,当电子可以从表面态隧穿到尖端时,必须考虑充电和放电过程的速率。已经发现,由于表面状态和最小导带的相同轨道特性,量子力学选择规则禁止了电子从导带到表面态的光学跃迁(充电过程)。因此,表面状态不会达到其平衡占有率,因此不会发生钉扎。此外,结合X-STM,X-STS,模拟模型和透射电子显微镜(TEM)的优点,探索了在GaN(0001)上生长的InN层。发现GaN和InN的晶格失配可通过引入位错网络直接在GaN / InN界面处消散。结果,长满的InN层具有最高的质量且缺陷浓度低。在m平面分裂表面上,界面位错在InN区域中沿[0001]方向诱发台阶。这些步骤导致费米能级的外部固定。在高质量样品上未观察到由固有表面态引起的表面附近的电子积累层(以前在低质量的InN层上观察到)。因此,电子累积层不是本征性质,因此InN似乎与其他III-V族半导体一样常规。

著录项

  • 作者

    Schnedler Michael;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号