首页> 外文OA文献 >What is the effect of sample and prior distributions on a Bayesian autoregressive linear model? An application to piped water consumption
【2h】

What is the effect of sample and prior distributions on a Bayesian autoregressive linear model? An application to piped water consumption

机译:样本和先验分布对贝叶斯自回归线性模型有什么影响?管道用水的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we analyze the effect of four possible alternatives regarding the prior distributions in a linear model with autoregressive errors to predict piped water consumption: Normal-Gamma, Normal-Scaled Beta two, Studentized-Gamma and Student's t-Scaled Beta two. We show the effects of these prior distributions on the posterior distributions under different assumptions associated with the coefficient of variation of prior hyperparameters in a context where there is a conflict between the sample information and the elicited hyperparameters. We show that the posterior parameters are less affected by the prior hyperparameters when the Studentized-Gamma and Student's t-Scaled Beta two models are used. We show that the Normal-Gamma model obtains sensible outcomes in predictions when there is a small sample size. However, this property is lost when the experts overestimate the certainty of their knowledge. In the case that the experts greatly trust their beliefs, it is a good idea to use Student's t distribution as the prior distribution, because we obtain small posterior predictive errors. In addition, we find that the posterior predictive distributions using one of the versions of Student's t as prior are robust to the coefficient of variation of the prior parameters. Finally, it is shown that the Normal-Gamma model has a posterior distribution of the variance concentrated near zero when there is a high level of confidence in the experts' knowledge: this implies a narrow posterior predictive credibility interval, especially using small sample sizes.
机译:在本文中,我们分析了具有自回归误差的线性模型中有关先验分布的四个可能替代方案的影响,以预测管道用水量:正伽玛,正比例Beta 2,Studentized-Gamma和学生t比例Beta 2。我们在样本信息与导出的超参数之间存在冲突的情况下,显示了与与先验超参数的变化系数相关的不同假设下,这些先验分布对后验分布的影响。我们显示当使用Studentized-Gamma和Student's t-Scaled Beta两个模型时,后验参数受先验超参数的影响较小。我们显示,当样本量较小时,Normal-Gamma模型可在预测中获得明智的结果。但是,当专家高估他们的知识的确定性时,此属性会丢失。在专家们非常信任他们的信念的情况下,最好使用Student的t分布作为先验分布,因为我们得到的后验预测误差很小。此外,我们发现使用Student t的一种版本作为后验的后验预测分布对先验参数的变异系数具有鲁棒性。最终,当对专家知识的置信度很高时,表明法线-伽玛模型的后验分布集中于零附近:这意味着后验预测可信度区间狭窄,尤其是使用小样本量时。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号