首页> 外文OA文献 >In-silico Models for Capturing the Static and Dynamic Characteristics of Robustness within Complex Networks
【2h】

In-silico Models for Capturing the Static and Dynamic Characteristics of Robustness within Complex Networks

机译:捕获复杂网络内鲁棒性静态和动态特性的计算机模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Understanding the role of structural patterns within complex networks is essential to establish the governing principles of such networks. Social networks, biological networks, technological networks etc. can be considered as complex networks where information processing and transport plays a central role. Complexity in these net works can be due to abstraction, scale, functionality and structure. Depending on the abstraction each of these can be categorized further. Gene regulatory networks are one such category of biological networks. Gene regulatory networks (GRNs) are assumed to be robust under internal and external perturbations. Network motifs such as feed-forward loop motif and bifan motif are believed to play a central role functionally in retaining GRN behavior under lossy conditions. While the role of static characteristics like average shortest path, density, degree centrality among other topological features is well documented by the research community, the structural role of motifs and their dynamic characteristics are not xiii well understood. Wireless sensor networks in the last decade were intensively studied using network simulators. Can we use in-silico experiments to understand biological network topologies better? Does the structure of these motifs have any role to play in ensuring robust information transport in such networks? How do their static and dynamic roles differ? To understand these questions, we use in-silico network models to capture the dynamic characteristics of complex network topologies. Developing these models involve network mapping, sink selection strategies and identifying metrics to capture robust system behavior. Further, I studied the dynamic aspect of network characteristics using variation in network information flow under perturbations defined by lossy conditions and channel capacity. We use machine learning techniques to identify significant features that contribute to robust network performance. Our work demonstrates that although the structural role of feed-forward loop motif in signal transduction within GRNs is minimal, these motifs stand out under heavy perturbations.
机译:了解复杂模式在复杂网络中的作用对于建立此类网络的管理原则至关重要。社会网络,生物网络,技术网络等可以被视为复杂的网络,其中信息处理和传输起着核心作用。这些网络的复杂性可能归因于抽象,规模,功能和结构。根据抽象的不同,可以将它们进一步分类。基因调控网络就是这样一种生物网络。假设基因调节网络(GRN)在内部和外部扰动下均很健壮。人们认为网络基序(例如前馈环基序和bifan基序)在有损条件下在保留GRN行为方面起着核心作用。虽然研究团体已充分记录了静态特征(例如平均最短路径,密度,度中心性)在其他拓扑特征中的作用,但尚未充分了解图案的结构作用及其动态特征。使用网络模拟器对过去十年中的无线传感器网络进行了深入研究。我们可以使用计算机内实验更好地了解生物网络拓扑吗?这些主题的结构是否对确保此类网络中可靠的信息传输有任何作用?他们的静态和动态角色如何不同?为了理解这些问题,我们使用计算机内网络模型来捕获复杂网络拓扑的动态特征。开发这些模型涉及网络映射,接收器选择策略和识别指标以捕获可靠的系统行为。此外,我在有损条件和信道容量所确定的扰动下,利用网络信息流的变化研究了网络特性的动态方面。我们使用机器学习技术来识别有助于增强网络性能的重要功能。我们的工作表明,尽管前馈环基序在GRN内信号转导中的结构作用微乎其微,但这些基序在剧烈扰动下脱颖而出。

著录项

  • 作者

    Kamapantula Bhanu K;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号