首页> 外文学位 >In-silico models for capturing the static and dynamic characteristics of robustness within complex networks.
【24h】

In-silico models for capturing the static and dynamic characteristics of robustness within complex networks.

机译:电子模型,用于捕获复杂网络中鲁棒性的静态和动态特征。

获取原文
获取原文并翻译 | 示例

摘要

Understanding the role of structural patterns within complex networks is essential to establish the governing principles of such networks. Social networks, biological networks, technological networks etc. can be considered as complex networks where information processing and transport plays a central role. Complexity in these networks can be due to abstraction, scale, functionality and structure. Depending on the abstraction each of these can be categorized further. Gene regulatory networks are one such category of biological networks. Gene regulatory networks (GRNs) are assumed to be robust under internal and external perturbations. Network motifs such as feed-forward loop motif and bifan motif are believed to play a central role functionally in retaining GRN behavior under lossy conditions. While the role of static characteristics like average shortest path, density, degree centrality among other topological features is well documented by the research community, the structural role of motifs and their dynamic characteristics are not well understood. Wireless sensor networks in the last decade were intensively studied using network simulators. Can we use in-silico experiments to understand biological network topologies better? Does the structure of these motifs have any role to play in ensuring robust information transport in such networks? How do their static and dynamic roles differ? To understand these questions, we use in-silico network models to capture the dynamic characteristics of complex network topologies. Developing these models involve network mapping, sink selection strategies and identifying metrics to capture robust system behavior. Further, I studied the dynamic aspect of network characteristics using variation in network information ?ow under perturbations de?ned by lossy conditions and channel capacity. We use machine learning techniques to identify signi?cant features that contribute to robust network performance. Our work demonstrates that although the structural role of feed-forward loop motif in signal transduction within GRNs is minimal, these motifs stand out under heavy perturbations.
机译:了解复杂模式在复杂网络中的作用对于建立此类网络的管理原则至关重要。社会网络,生物网络,技术网络等可以被视为复杂的网络,其中信息处理和传输起着核心作用。这些网络的复杂性可能归因于抽象,规模,功能和结构。根据抽象的不同,可以将它们进一步分类。基因调控网络就是这样一种生物网络。假设基因调节网络(GRN)在内部和外部扰动下均很健壮。人们认为网络基序(例如前馈环基序和bifan基序)在有损条件下在保留GRN行为方面起着核心作用。尽管研究团体已充分记录了静态特征(如平均最短路径,密度,度中心性)在其他拓扑特征中的作用,但对动机的结构作用及其动态特征却知之甚少。使用网络模拟器对过去十年中的无线传感器网络进行了深入研究。我们可以使用计算机内实验更好地了解生物网络拓扑吗?这些主题的结构是否对确保此类网络中可靠的信息传输有任何作用?它们的静态和动态角色有何不同?为了理解这些问题,我们使用计算机内网络模型来捕获复杂网络拓扑的动态特征。开发这些模型涉及网络映射,接收器选择策略和识别指标以捕获可靠的系统行为。此外,我在有损条件和信道容量定义的扰动下,利用网络信息流的变化研究了网络特性的动态方面。我们使用机器学习技术来识别有助于增强网络性能的重要功能。我们的工作表明,尽管前馈环基序在GRN内信号转导中的结构作用微乎其微,但这些基序在剧烈扰动下脱颖而出。

著录项

  • 作者

    Kamapantula, Bhanu.;

  • 作者单位

    Virginia Commonwealth University.;

  • 授予单位 Virginia Commonwealth University.;
  • 学科 Computer science.;Systematic biology.
  • 学位 Ph.D.
  • 年度 2015
  • 页码 138 p.
  • 总页数 138
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:52:16

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号