首页> 外文OA文献 >Robust Control of Vectored Thrust Aerial Vehicles via Variable Structure Control Methods
【2h】

Robust Control of Vectored Thrust Aerial Vehicles via Variable Structure Control Methods

机译:矢量化推力飞行器的变结构控制方法鲁棒控制

摘要

The popularity of Unmanned Aerial Vehicles (UAVs) has grown rapidly in many civil and military applications in the last few decades. Recent UAV applications include crop monitoring, terrain mapping and aerial photography, where one or several image sensors attached to the UAV provide important terrain information. A thrust vectoring aerial vehicle, a vehicle with the ability to change the direction of thrust generated while keeping the UAV body at a zero roll and pitch orientation, can serve well in such applications by allowing the sensors to capture stable image data without additional gimbals, reducing the payload and cost while increasing the flight endurance. Furthermore, thrust vectoring UAVs can perform fast forward flight as well as hover operations with non-zero pitch: features which can serve well in military applications. The first part of this research focuses on developing a comprehensive dynamic model and a low level attitude and position control structure for a tri-rotor UAV with thrust vectoring capability, namely the Vectored Thrust Aerial Vehicle.Nonlinear dynamics of UAVs require robust control methods to realize stable flight. Special attention needs to be given to wind gust disturbances, and parametric uncertainties. Sliding Mode Control , a type of Variable Structure Controller, has served well over the years in controlling UAVs and other dynamic systems. However, conventional Sliding Mode Control results in a high frequency switching behavior of the control signal. Furthermore, Sliding Mode Control does not focus on fast set-point regulation or tracking, which can be advantageous for UAVs and many other robotic systems.Taking these research gaps into account, this work presents an Adaptive Variable Structure Control method, which can acquire fast set-point regulation while maintaining robustness against external disturbances and uncertainties. The adaptive algorithm developed in this work is fundamentally different from current Adaptive Sliding Mode Control and other Variable Structure methods. Simulation and experimental results are provided to demonstrate the superiority of the proposed approach compared to Sliding Mode Control. The novel adaptive algorithm is applicable to many nonlinear dynamic systems including UAVs, robot arm manipulators and space robots.The same adaptive concept is then utilized to develop an Adaptive Second Order Sliding Mode Controller. Compared to existing Second Order Sliding Mode Control methods, the proposed methodology is able to produce reduced sliding manifold reach times and consume less amount of control resources: features which are particularly advantageous for systems with limited control resources. Simulations are conducted to evaluate the performance of the proposed Adaptive Second Order Sliding Mode Control algorithm.
机译:在过去的几十年中,无人驾驶飞机(UAV)在许多民用和军事应用中的普及迅速增长。无人机的最新应用包括作物监测,地形制图和航空摄影,其中连接到无人机的一个或多个图像传感器可提供重要的地形信息。推力矢量飞行器是一种能够改变产生的推力方向,同时将无人机主体保持在零侧倾和俯仰方向的能力的车辆,通过允许传感器捕获稳定的图像数据而无需额外的万向架,可以很好地在此类应用中使用,减少有效载荷和成本,同时增加飞行续航力。此外,推力矢量无人机可以进行非零俯仰的快速向前飞行和悬停操作:这些功能可以在军事应用中很好地使用。本研究的第一部分着重于为具有推力矢量功能的三旋翼无人机,即矢量推力飞行器,开发综合的动力学模型以及低水平姿态和位置控制结构。无人机的非线性动力学需要鲁棒的控制方法来实现。稳定的飞行。需要特别注意阵风干扰和参数不确定性。滑模控制是一种可变结构控制器,多年来在控制无人机和其他动态系统方面一直发挥着很好的作用。然而,常规的滑动模式控制导致控制信号的高频切换行为。此外,滑模控制并不专注于快速的设定点调节或跟踪,这对无人机和许多其他机器人系统可能是有利的。考虑到这些研究差距,本文提出了一种自适应变结构控制方法,该方法可以快速获得设定点调节,同时保持对外部干扰和不确定性的鲁棒性。这项工作中开发的自适应算法从根本上不同于当前的自适应滑模控制和其他可变结构方法。提供了仿真和实验结果,以证明与滑模控制相比,该方法的优越性。这种新颖的自适应算法适用于许多非线性动力学系统,包括无人机,机械臂机械手和太空机器人,然后利用相同的自适应概念来开发自适应二阶滑模控制器。与现有的二阶滑模控制方法相比,所提出的方法能够减少滑动歧管的到达时间并消耗较少的控制资源:这些特征对于控制资源有限的系统特别有利。进行仿真以评估所提出的自适应二阶滑模控制算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号