首页> 外文OA文献 >Metastable sets in open dynamical systems and substochastic Markov chains
【2h】

Metastable sets in open dynamical systems and substochastic Markov chains

机译:开放动力系统和亚随机马尔可夫链中的亚稳态集

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this thesis we look at dynamical systems in which typical trajectories (1) have a non-zero probability of exiting the state space and (2) before exiting, tend to remain in one proper subset of the state space for a long time. The first property defines an open dynamical system and the second property is called metastability. Sets in which trajectories remain for a long time are called metastable or almost-invariant sets. The major contribution of this thesis is the development of techniques to locate and characterise metastable sets in open dynamical systems.In closed dynamical systems, there are well-established connections between the spectrum of the Perron-Frobenius operator and the metastability properties of the system. After introducing the research aims in Chapter 1, we review the existing literature and establish notation in Chapter 2. One can use the eigenfunctions of the transfer operator to locate metastable sets, and one can derive bounds on the maximal invariance ratio of a set in terms of the second largest eigenvalue of a discretised version of the Perron-Frobenius operator. In Chapters 3 and 4 we extend these techniques to open dynamical systems. Chapter 3 introduces a new closing operation for open systems that has a minimal effect on the metastability properties, and allows us to apply existing techniques for closed systems to locate metastable sets, and to derive bounds on the maximal invariance ratio in terms of the second largest eigenvalue of the new operator. In Chapter 4 we derive bounds on the metastability and the conductance of substochastic Markov chains, which can be related to discretised transfer operators for open dynamical systems. Both conductance and metastability quantify how well subsets of states interact and mix. In Chapter 5 we apply some of the techniques developed in previous chapters to a global ocean model, and characterise the connectivity of the surface of the ocean using both absorption probabilities and eigenvector methods.
机译:在本文中,我们着眼于动力学系统,其中典型的轨迹(1)退出状态空间的机率不为零,而(2)退出之前的趋势倾向于长时间保留在状态空间的一个适当子集中。第一个属性定义了开放的动力学系统,第二个属性称为亚稳。轨迹保持较长时间的集合称为亚稳态或几乎不变的集合。本文的主要贡献是开发了在开放动力系统中定位和表征亚稳态集的技术。在封闭动力系统中,Perron-Frobenius算子的谱与系统的亚稳性之间建立了牢固的联系。在介绍了第一章的研究目的之后,我们回顾了现有文献并在第二章中建立了表示法。一个人可以使用转移算子的本征函数来定位亚稳态集,一个人可以得出一个集的最大不变率的界离散化的Perron-Frobenius算子的第二大特征值。在第3章和第4章中,我们将这些技术扩展到开放动力系统。第3章介绍了对开放系统的新关闭操作,该操作对亚稳态特性的影响最小,并且使我们能够将现有技术应用于封闭系统以定位亚稳态集,并以第二最大为准推导最大不变率的界限。新运算符的特征值。在第四章中,我们得出了亚随机马尔可夫链的亚稳定性和电导率的界线,这与开放动力系统的离散转移算子有关。电导和亚稳态都可以量化状态子集的相互作用和混合程度。在第5章中,我们将前几章中开发的一些技术应用于全球海洋模型,并使用吸收概率和特征向量方法来表征海洋表面的连通性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号