首页> 外文OA文献 >Physico-mechanical design of conducting polymers for neural interface applications
【2h】

Physico-mechanical design of conducting polymers for neural interface applications

机译:用于神经接口应用的导电聚合物的物理机械设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A key limitation associated with conducting polymers (CP) for implantable electrodeapplications is their inferior physico-mechanical properties and the effect of this onbiological performance. This research investigates the physico-mechanical cues ofconventional conducting polymer coatings and aims to understand their effects on neuraladhesion and neurite extension. The underlying hypothesis was that the biologicalperformance of CPs can be effectively controlled by physical cues such as surfacetopography and mechanical softness.Poly(3,4-ethylenedioxythiophene) (PEDOT) doped with perchlorate, benzenesulfonate,tosylate (pTS), dodecylbenzenesulfonate and polystyrenesulfonate were comparedacross a range of baseline material properties. Additionally, the deposition charge usedto produce PEDOT was varied from 0.05 to 1 C/cm2 to determine an optimal thickness forelectrode coatings. To address the need for electroactive biomaterials with improvedneural interfacing, nanobrush-CP hybrids were fabricated. Dense poly(2-hydroxyethylmethacrylate) (PHEMA) brushes were grafted via surface-initiated atom transfer radicalpolymerisation (SI-ATRP). PEDOT/pTS was electrochemically deposited through thisnanobrush substrate. The formation of the hybrid was confirmed and characterisedacross implant performance metrics.The physical, mechanical, electrical and biological performance of PEDOT coatings wasused to assess ideal fabrication parameters, optimised for neural cell interactions.Nanoindentation techniques were used to yield the first quantitative values for stiffnessmoduli of electrodeposited CP coatings on metal substrates. It was found that thenodularity of the CP surface increased with increasing coating thickness and decreasingdopant size. A major finding of this study was that high roughness of conventionallydoped PEDOT produced on the micron scale, prevented attachment of neural cells.Consequently, thin PEDOT films doped with the low toxicity anion, pTS, supported thegreatest cell attachment and neurite outgrowth. Electrochemical performance wasanalyzed and supported the finding that thin PEDOT/pTS provides significant biologicaland electrochemical advantages over platinum electrodes. The nanobrush/CP hybridfurther improved the electrochemical properties of conventional CPs and offers a newapproach for selective cell attachment via the CP coated region of the brush substrate.This thesis demonstrates that the biological performance of CPs is strongly influenced bythe physico-mechanical properties with optimal coatings produced in the sub-micronrange using conventional doping ions. A new hybrid nanobrush/CP is presented withfabrication parameters which can be tailored for target material properties. Future workwill focus on delineating the interfacial structure of the hybrid to optimise the cushioningeffect of the brushes for neural interface applications.
机译:与可植入电极应用中的导电聚合物(CP)相关的关键限制是其较差的物理机械性能以及这种生物性能的影响。这项研究调查了常规导电聚合物涂层的物理力学线索,旨在了解它们对神经粘附和神经突扩展的影响。基本假设是可以通过物理提示(例如表面形貌和机械柔软性)有效控制CP的生物学性能。一系列基线材料属性。此外,用于生产PEDOT的沉积电荷在0.05到1 C / cm2之间变化,以确定电极涂层的最佳厚度。为了满足对具有改进的神经接口的电活性生物材料的需求,制造了纳米刷-CP杂化物。通过表面引发的原子转移自由基聚合(SI-ATRP)接枝了稠密的聚(甲基丙烯酸2-羟乙酯)(PHEMA)刷子。 PEDOT / pTS通过该纳米刷基底电化学沉积。在植入物性能指标上确认并鉴定了杂化物的形成。使用PEDOT涂层的物理,机械,电气和生物学性能评估理想的制造参数,并针对神经细胞相互作用进行了优化。纳米压痕技术用于获得刚度模量的第一个定量值金属基材上的电沉积CP涂层的数量。发现CP表面的球形度随着涂层厚度的增加和掺杂剂尺寸的减小而增加。这项研究的主要发现是,常规掺杂的PEDOT的高粗糙度在微米级产生,阻止了神经细胞的附着。因此,掺杂有低毒性阴离子pTS的PEDOT薄膜支持最大的细胞附着和神经突生长。分析了电化学性能,并支持以下发现:与铂电极相比,薄的PEDOT / pTS具有明显的生物学和电化学优势。纳米刷/ CP杂化物进一步改善了常规CP的电化学性能,并为通过刷基底的CP涂层区域选择性附着细胞提供了一种新方法。本文证明,CP的生物学性能受最佳涂层的物理机械性能的强烈影响。使用常规的掺杂离子在亚微米范围内产生。提出了一种新型混合纳米刷/ CP,其制造参数可根据目标材料的性能进行定制。未来的工作将集中于描绘混合体的界面结构,以优化神经接口应用的刷子的缓冲效果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号