首页> 外文学位 >Functional conducting polymer nanomaterials and bioactive polymer nanofibers for neural prosthetic - nervous system interfaces.
【24h】

Functional conducting polymer nanomaterials and bioactive polymer nanofibers for neural prosthetic - nervous system interfaces.

机译:用于神经假体-神经系统界面的功能性导电聚合物纳米材料和生物活性聚合物纳米纤维。

获取原文
获取原文并翻译 | 示例

摘要

Neural prosthetic devices are artificial extensions to the body that restore or supplement function of the nervous system lost due to disease or injury. The fundamental process that occurs at the electrode-tissue interface is the transduction of charge carriers from electrons in the metal electrode to ions in the tissue. Unfortunately only a minority of the recording electrodes on these devices continue to function for long periods of time. Cellular reactive responses including an acute inflammatory response and chronic foreign body reaction around the insertion site are thought to contribute to neuronal cell loss and device failure. Although several attempts have been made to modify the surfaces of neural electrodes in order to improve the electrical properties and reduce the immune response, the improvements in device performance over extended periods of time have been limited. This dissertation was focused on the use of poly (pyrrole) (PPy) and poly (3,4-ethylenedioxythiophene) (PEDOT) conducting polymer nanomaterials and bioactive polymers for modification of electrode-tissue interface of the neural microelectrodes. We successfully showed that: (1) PEDOT and PPy nanotubes could significantly reduce the impedance of neural electrode sites and increase the charge capacity. (2) Anti-inflammatory drugs (dexamethasone) could be precisely released at desired points in time from conducting polymer nanotubes by using electrical stimulation as low as 0.5 V. (3) Cell culture experiments of dorsal root ganglion explants revealed the biocompatibility and neurite guidance of conducting polymer nanomaterials, as seen by the sustained growth of neurons and alignment of neurites parallel to the fiber direction. (4) Alginate hydrogel coatings on the neural probes provided a mechanical buffer layer between the hard silicon-based probe and the soft brain tissue, a scaffold for growing conducting polymer, and a diffusion barrier for controlling drug release. (5) PEDOT nanotubes increased the signal-to-noise ratio of recording sites in vivo. In the chronic response period (>2 weeks) the SNR values for the coated recording sites were 6.7 +/- 3.7 percent higher than the uncoated sites.; In summary, we report novel bioactive coating methods and drug delivery strategies for extending the long-term performance of neural microelectrodes.
机译:神经修复装置是对人体的人工延伸,可以恢复或补充由于疾病或受伤而丧失的神经系统功能。发生在电极-组织界面的基本过程是将载流子从金属电极中的电子转换为组织中的离子。不幸的是,这些设备上只有少数记录电极可以长时间连续工作。细胞反应性反应包括插入部位周围的急性炎症反应和慢性异物反应被认为是导致神经元细胞丢失和设备衰竭的原因。尽管已经进行了一些尝试来修饰神经电极的表面以改善电特性并降低免疫应答,但是在延长的时间段内设备性能的改善受到了限制。本文主要研究聚吡咯(PPy)和聚(3,4-乙撑二氧噻吩)(PEDOT)导电聚合物纳米材料以及生物活性聚合物在神经微电极电极-组织界面修饰中的应用。我们成功地表明:(1)PEDOT和PPy纳米管可以显着降低神经电极部位的阻抗并增加充电容量。 (2)可以通过低至0.5 V的电刺激在导电聚合物纳米管上的所需时间精确地释放抗炎药(地塞米松)。(3)背根神经节外植体的细胞培养实验显示出生物相容性和神经突指导如神经元的持续生长和神经突平行于纤维方向排列所看到的,是导电高分子纳米材料的特性。 (4)神经探针上的藻酸盐水凝胶涂层在硬硅基探针和软脑组织之间提供了机械缓冲层,用于生长导电聚合物的支架和用于控制药物释放的扩散屏障。 (5)PEDOT纳米管增加了体内记录部位的信噪比。在慢性反应期间(> 2周),带涂层的录音位点的SNR值比未带涂层的录音位点高6.7 +/- 3.7%。总之,我们报告了新型的生物活性涂层方法和药物递送策略,以扩展神经微电极的长期性能。

著录项

  • 作者

    Abidian, Mohammad Reza.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2007
  • 页码 247 p.
  • 总页数 247
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物医学工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号