首页> 外文OA文献 >Packing of particles during softening and melting process.
【2h】

Packing of particles during softening and melting process.

机译:在软化和熔化过程中堆积颗粒。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Softening deformation of iron ore in the form of sinter, pellet, and lump ore in the cohesive zone of an ironmaking blast furnace is an important phenomenon that has a significant effect on gas permeability and consequently blast furnace production efficiency. The macroscopic softening deformation behavior of the bed and the microscopic deformation behavior of the individual particles in the packed bed are investigated in this study using wax balls to simulate the fused layer behavior of the cohesive zone. The effects of softening temperature, load pressure, and bed composition (mono - single melting particles, including pure or blend particles vs binary – two different melting point particles) on softening deformation are examined.The principal findings of this study are:1. At low softening temperatures, an increase in load pressure increases the deformation rate almost linearly.2. At higher softening temperatures, an increase in load pressure dramatically increases the deformation rate, and after a certain time there is no more significant change in deformation rate.3. The bed deformation rate of a mono bed is much greater than that of a binary one.4. In a binary system, the softening deformation rate increases almost proportionally with the increase in the amount of lower melting point wax balls.5. In a mono system with blend particles, the content of the lower melting point material has a more significant effect on overall bed deformation than the higher melting point one.6. The macro softening deformation of the bed behaves the theory of creep deformation.7. A mathematical model for predicting bed porosity change due to softening deformation based on creep deformation theory has been developed.8. Increase in load pressure also reduces the peak contact face number of the distribution curves, and this is more prominent with higher porosity values.9. The contribution of contact face number to bed porosity reduction is more pronounced in a mono system than in a binary system.10. The porosity reduction in a binary bed is more due to the contact face area increase, presumably of the lower melting point particles.11. The mono system has a single peak contact face number distribution pattern while the binary system exhibits a bimodal distribution pattern once the higher melting point material starts to deform.12. In a binary system, an increase in deformation condition severity tends to reduce the contact face number of the higher melting point material without having to increase the contact face number of the lower melting point material accordingly to achieve a given porosity.
机译:炼铁高炉粘结区内以烧结矿,球团矿和块矿形式存在的铁矿石软化变形是一种重要现象,对气体渗透性和高炉生产效率产生重大影响。在本研究中,使用蜡球模拟粘结区的熔融层行为,研究了床的宏观软化变形行为和填充床中单个颗粒的微观变形行为。研究了软化温度,负载压力和床层组成(单-单熔融颗粒,包括纯颗粒或共混颗粒与二元-两个不同的熔点颗粒)对软化变形的影响。本研究的主要发现是:1。在较低的软化温度下,负载压力的增加几乎线性地增加了变形率。2。在较高的软化温度下,负载压力的增加会极大地提高变形率,并且在一定时间后,变形率将不再有显着变化。3。单人床的床变形率远大于二元床的床变形率。4。在二元体系中,软化变形率几乎与较低熔点蜡球数量的增加成比例。5。在具有共混颗粒的单系统中,较低熔点材料的含量对整体床层变形的影响比较高熔点的影响更大。6。床的宏观软化变形符合蠕变变形理论。7。建立了基于蠕变变形理论的预测软化变形引起的孔隙度变化的数学模型。8。负载压力的增加也减少了分布曲线的峰值接触面数量,并且在较高的孔隙率值时更加突出9。接触面数对降低床孔隙率的贡献在单系统中比在二元系统中更为明显10。二元床中孔隙率的降低更多是由于接触面面积的增加,大概是较低熔点的颗粒所致。11。一旦较高熔点的材料开始变形,单晶体系就具有一个峰接触面数量分布模式,而双晶体系则表现出双峰分布模式。12。在二元系统中,变形条件严重性的增加趋向于降低较高熔点材料的接触面数量,而不必相应地增加较低熔点材料的接触面数量以实现给定的孔隙率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号