首页> 外文OA文献 >An online and adaptive signature-based approach for intrusion detection using learning classifier systems
【2h】

An online and adaptive signature-based approach for intrusion detection using learning classifier systems

机译:使用学习分类器系统的基于在线和自适应签名的入侵检测方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis presents the case of dynamically and adaptively learning signatures for network intrusion detection using genetic based machine learning techniques. The two major criticisms of the signature based intrusion detection systems are their i) reliance on domain experts to handcraft intrusion signatures and ii) inability to detect previously unknown attacks or the attacks for which no signatures are available at the time. In this thesis, we present a biologically-inspired computational approach to address these two issues. This is done by adaptively learning maximally general rules, which are referred to as signatures, from network traffic through a supervised learning classifier system, UCS. The rules are learnt dynamically (i.e., using machine intelligence and without the requirement of a domain expert), and adaptively (i.e., as the data arrives without the need to relearn the complete model after presenting each data instance to the current model). Our approach is hybrid in that signatures for both intrusive and normal behaviours are learnt. The rule based profiling of normal behaviour allows for anomaly detection in that the events not matching any of the rules are considered potentially harmful and could be escalated for an action. We study the effect of key UCS parameters and operators on its performance and identify areas of improvement through this analysis. Several new heuristics are proposed that improve the effectiveness of UCS for the prediction of unseen and extremely rare intrusive activities. A signature extraction system is developed that adaptively retrieves signatures as they are discovered by UCS. The signature extraction algorithm is augmented by introducing novel subsumption operators that minimise overlap between signatures. Mechanisms are provided to adapt the main algorithm parameters to deal with online noisy and imbalanced class data. The performance of UCS, its variants and the signature extraction system is measured through standard evaluation metrics on a publicly available intrusion detection dataset provided during the 1999 KDD Cup intrusion detection competition. We show that the extended UCS significantly improves test accuracy and hit rate while significantly reducing the rate of false alarms and cost per example scores than the standard UCS. The results are competitive to the best systems participated in the competition in addition to our systems being online and incremental rule learners. The signature extraction system built on top of the extended UCS retrieves a magnitude smaller rule set than the base UCS learner without any significant performance loss. We extend the evaluation of our systems to real time network traffic which is captured from a university departmental server. A methodology is developed to build fully labelled intrusion detection dataset by mixing real background traffic with attacks simulated in a controlled environment. Tools are developed to pre-process the raw network data into feature vector format suitable for UCS and other related machine learning systems. We show the effectiveness of our feature set in detecting payload based attacks.
机译:本文提出了使用基于遗传的机器学习技术动态自适应地学习用于网络入侵检测的签名的情况。对基于签名的入侵检测系统的两个主要批评是:i)依靠领域专家来手工制作入侵签名;以及ii)无法检测以前未知的攻击或当时没有签名的攻击。在本文中,我们提出了一种生物学启发的计​​算方法来解决这两个问题。这是通过有监督的学习分类器系统UCS从网络流量中自适应地学习最大的通用规则(称为签名)来完成的。动态地(即使用机器智能且无需领域专家的要求)和自适应地(即随着数据到达而无需将每个数据实例呈现给当前模型后重新学习完整的模型)来学习规则。我们的方法是混合的,因为可以学习侵入性行为和正常行为的签名。对正常行为的基于规则的概要分析可以进行异常检测,因为与任何规则都不匹配的事件被认为具有潜在的危害性,并且可以针对某个行为进行升级。我们研究了关键的UCS参数和运算符对其性能的影响,并通过此分析确定了需要改进的地方。提出了几种新的启发式方法,可以提高UCS在预测看不见且极为罕见的侵入性活动方面的有效性。开发了一种签名提取系统,该系统可自适应地检索UCS发现的签名。通过引入使签名之间的重叠最小的新颖的包含运算符,可以增强签名提取算法。提供了用于调整主要算法参数以处理在线噪声和不平衡类数据的机制。 UCS的性能,其变体和签名提取系统是通过在1999年KDD Cup入侵检测竞赛中提供的公共入侵检测数据集中的标准评估指标来衡量的。我们显示,与标准UCS相比,扩展的UCS显着提高了测试准确性和命中率,同时显着降低了误报率和每个示例分数的成本。除了我们的系统是在线系统和增量规则学习器之外,结果还比参加比赛的最佳系统更具竞争力。构建在扩展UCS之上的特征提取系统检索的规则集比基本UCS学习者小得多,而不会造成任何明显的性能损失。我们将对系统的评估扩展到从大学部门服务器捕获的实时网络流量。通过将实际背景流量与在受控环境中模拟的攻击进行混合,开发了一种构建完全标记的入侵检测数据集的方法。开发工具以将原始网络数据预处理为适用于UCS和其他相关机器学习系统的特征向量格式。我们展示了我们的功能集在检测基于有效负载的攻击中的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号