首页> 外文OA文献 >Mixed finite element methods for nonlinear equations: a priori and a posteriori error estimates
【2h】

Mixed finite element methods for nonlinear equations: a priori and a posteriori error estimates

机译:非线性方程的混合有限元方法:先验误差和后验误差估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A priori error estimation provides informationabout the asymptotic behaviorof the approximate solution andinformationon convergence rates of the problem. Contrarily,a posteriori error estimation derives the estimation of the exact errorby employing the approximate solution and providesa practical accurate error estimation.Additionally, a posteriori error estimates can be used to steer adaptive schemes,that is to decide the refinement processes,namely local mesh refinement orlocal order refinement schemes. Adaptive schemes offinite element methods for numerical solutions of partial differential equationsare considered standard toolsin science and engineering to achieve better accuracywith minimum degrees of freedom.In this thesis, we focus on a posteriori error estimationsof mixed finite element methods for nonlineartime dependent partial differential equations.Mixed finite element methods are methods which are based on mixedformulations of the problem. In a mixed formulation,the derivative of the solution is introduced as aseparate dependent variable in a different finite element space than the solution itself.We implement the $H^1$-Galerkin mixed finite element method (H1MFEM)to approximate the solution and its derivative.Two nonlinear time dependent partial differential equations are considered in this thesis,namely the Benjamin-Bona-Mahony (BBM) equation and Burgers equation.Our a posteriori error estimations are based on implicit schemes of a posteriori errorestimations, where the error estimators are locally computed on each element.We propose a posteriori error estimates by using the approximate solution produced by H1MFEMand use the a posteriori error estimates to compute the local error estimators,respectively for the BBM and Burgers equations.Then, we prove that the introduced a posteriori error estimates are accurate and efficient estimations of the exact errors.The last part of this study is on numerical studies of adaptive meshrefinement schemes for the two equations mentioned above.By implementing the introduced a posteriori error estimates,we propose adaptive mesh refinement schemes of H1MFEM for both equations.
机译:先验误差估计提供有关近似解的渐近行为的信息以及有关问题收敛速度的信息。相反,后验误差估计通过采用近似解来导出精确误差的估计,并提供实用的精确误差估计。此外,后验误差估计可用于指导自适应方案,即确定细化过程,即局部网格细化。或本地订单优化方案。偏微分方程数值解的有限元方法自适应方案被认为是科学和工程领域的标准工具,可以在最小自由度下获得更高的精度。本文主要研究非线性时变偏微分方程混合有限元方法的后验误差估计。有限元方法是基于问题的混合公式的方法。在混合公式中,将解决方案的导数作为独立因变量引入到与解决方案本身不同的有限元空间中。我们采用$ H ^ 1 $ -Galerkin混合有限元方法(H1MFEM)来近似解决方案及其求解本文考虑了两个非线性的时间相关的偏微分方程,即本杰明-博纳-马洪尼(BBM)方程和伯格斯方程。我们的后验误差估计基于后验误差估计的隐式格式,其中误差估计为我们使用H1MFEM产生的近似解提出后验误差估计,并分别使用后验误差估计来计算BBM和Burgers方程的局部误差估计值。然后,我们证明引入了后验误差误差估计是对精确误差的准确而有效的估计。本研究的最后一部分是关于适应的数值研究。上面提到的两个方程的最优网格细化方案。通过实现引入的后验误差估计,我们为两个方程提出了H1MFEM的自适应网格细化方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号