首页> 外文期刊>Computers & mathematics with applications >A priori and a posteriori error estimates of H-1-Galerkin mixed finite element methods for elliptic optimal control problems
【24h】

A priori and a posteriori error estimates of H-1-Galerkin mixed finite element methods for elliptic optimal control problems

机译:椭圆最优控制问题的H-1-Galerkin混合有限元方法的先验和后验误差估计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we investigate numerical approximations of H-1-Galerkin mixed finite element methods for elliptic optimal control problems. The presented scheme is independent symmetric and positive definite for the state variables and the adjoint state variables. Moreover, the matching relation (i.e., LBB-condition) between the mixed element spaces V-h and W-h is not necessary, thus, we can choose the approximation spaces more flexibly. The state and co-state are approximated by the lowest order Raviart Thomas mixed finite element spaces and the standard finite element spaces, the control variable is approximated by piecewise constant functions. We derive a priori and a posteriori error estimates for the control variable, the state variables and the adjoint state variables. Finally, some numerical examples are given to demonstrate the theoretical results about a priori error estimates. (C) 2015 Elsevier Ltd. All rights reserved.
机译:在本文中,我们研究了椭圆最优控制问题的H-1-Galerkin混合有限元方法的数值逼近。所提出的方案对于状态变量和伴随状态变量是独立对称的并且是正定的。而且,混合元素空间V-h和W-h之间的匹配关系(即,LBB条件)不是必需的,因此,我们可以更灵活地选择近似空间。状态和共态由最低阶Raviart Thomas混合有限元空间和标准有限元空间近似,控制变量由分段常数函数近似。我们得出控制变量,状态变量和伴随状态变量的先验和后验误差估计。最后,给出了一些数值例子来说明关于先验误差估计的理论结果。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号