首页> 外文OA文献 >Mathematical Optimisation Techniques in Computer Vision and Machine Learning
【2h】

Mathematical Optimisation Techniques in Computer Vision and Machine Learning

机译:计算机视觉和机器学习中的数学优化技术

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis explores applications of mathematical optimisation to problems arising in machine learning and computer vision, including kernel methods, probabilistic graphical models and several classical topics including smoothing, additive models and state estimation. Mathematical optimisation provides tools for dealing with practical modelling problems and their transformations, as well as supplying powerful algorithm design frameworks, such as operator splitting methods. Convexity in particular is the key property that influences both design and analysis of the proposed techniques. As a contribution to kernel methods, a new kernel suitable for object recognition tasks is introduced which generalises several existing approaches and provides a principled way to incorporate information about geometric structure of scenes. Conditions under which the new kernel can be efficiently computed are presented and performance is evaluated on a number of standard datasets. A uniform treatment of a broad class of estimation problems is also presented, focusing on the underlying optimisation problems and their convexity properties. Convex optimisation formulations for additive models, dynamic generalised linear models and related techniques are given with a number of extensions, including feature selection and outlier detection. A major benefit of the optimisation viewpoint is the ability to deploy powerful algorithm design frameworks. Two new algorithms are provided: an efficient first order algorithm for additive models and a distributed algorithm for state estimation. Beyond convex optimisation, a large number of problems in computer vision and machine learning can be naturally modelled in the framework of discrete Markov random fields. Once the structure of such a model and its parameters are chosen, it is often desirable to find a joint configuration of variables that has the highest probability, known as maximum a posteriori inference. The final contribution of this thesis is the extension of the spectral relaxation family of algorithms to deal with maximum a posteriori inference in discrete Markov random fields with higher order potentials. This is accomplished by relying on the so called tensor power method, which generalises the basic procedure for leading eigenvector computation from matrices to higher order tensors.
机译:本文探讨了数学优化在机器学习和计算机视觉中出现的问题的应用,包括内核方法,概率图形模型和一些经典主题,包括平滑,加性模型和状态估计。数学优化提供了处理实际建模问题及其转换的工具,并提供了强大的算法设计框架,例如运算符拆分方法。凸度尤其是影响所提出技术的设计和分析的关键属性。作为对内核方法的贡献,引入了适用于对象识别任务的新内核,该内核概括了几种现有方法,并提供了一种原理方法来合并有关场景几何结构的信息。提出了可以有效计算新内核的条件,并在许多标准数据集上评估了性能。还提出了对一类广泛的估计问题的统一处理,重点放在基本优化问题及其凸性上。给出了用于加性模型,动态广义线性模型和相关技术的凸优化公式,并进行了许多扩展,包括特征选择和离群值检测。优化观点的主要好处是能够部署强大的算法设计框架。提供了两种新算法:用于加性模型的高效一阶算法和用于状态估计的分布式算法。除了凸优化之外,还可以在离散马尔可夫随机场的框架中自然建模计算机视觉和机器学习中的大量问题。一旦选择了这种模型的结构及其参数,通常希望找到具有最高概率的变量的联合配置,称为最大后验推断。本文的最后贡献是扩展了光谱弛豫族算法,以处理具有高阶电势的离散马尔可夫随机场中的最大后验推断。这是依靠所谓的张量幂方法完成的,该方法概括了将特征向量从矩阵引导到高阶张量的基本过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号