首页> 外文OA文献 >Dynamic soil-structure interaction analysis using the scaled boundary finite-element method.
【2h】

Dynamic soil-structure interaction analysis using the scaled boundary finite-element method.

机译:使用标度边界有限元方法的动态土-结构相互作用分析。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis presents the development of a reliable and efficient technique for the numerical simulation of dynamic soil-structure interaction problems in anisotropic and nonhomogeneous unbounded soils of arbitrary geometry. Such a technique is indispensable in the seismic analysis of large-scale engineering constructions and, to my best knowledge, does not exist at present. The theoretical framework of the research is based on the scaled boundary finite-element method. The following advances are achieved:The scaled boundary finite-element method is extended to simulate the dynamic response of non-homogeneous unbounded domains. The scaled boundary finite element equations in the frequency and time domains are derived for power-type non-homogeneity frequently employed in geotechnical engineering. A high-frequency asymptotic expansion of the dynamic-stiffness matrix is developed. The frequency domain analysis is performed by integrating the scaled boundary finite-element equation in dynamic stiffness. In the time domain, the scaled boundary finite-element equation including convolution integrals is solved for the unit-impulse response at discrete time stations.A Padé series solution for the scaled boundary finite-element equation in dynamic stiffness is developed. It converges over the whole frequency range as the order of the approximation increases. The computationally expensive task of numerically integrating the scaled boundary finite-element equation is circumvented.Exploiting the sparsity of the coefficientmatrices in the scaled boundary finite-element equation leads to a significant reduction in computer time and memory requirements for solving large-scale problems. Furthermore, lumped coefficient matrices are obtained by adopting the auss-Lobatto-Legendre shape functions with nodal quadrature, which avoids the eigenvalue problem in determining the asymptotic expansion.A high-order local transmitting boundary constructed from a continued-fraction solution of the dynamic-stiffness matrix is developed. An equation of motion as occurring in standard structural dynamics with symmetric and frequency-independent coefficient matrices is obtained. This transmitting boundary condition can be coupled seamlessly with standard finite elements. Transient responses are evaluated by using a standard timeintegration scheme. The expensive task of evaluating convolution integrals is circumvented.The advances developed in this thesis are applicable in other disciplines of engineering and science to the analysis of scalar and vector waves in unbounded media.
机译:本文提出了一种可靠而有效的技术,用于对任意几何形状的各向异性和非均质无边界土壤中的动态土-结构相互作用问题进行数值模拟。在大规模工程结构的地震分析中,这种技术是必不可少的,据我所知,目前还不存在。研究的理论框架是基于比例边界有限元方法。取得了以下进展:扩展了尺度边界有限元方法,以模拟非均匀无界域的动力响应。推导了频域和时域中的标度边界有限元方程,用于岩土工程中经常使用的幂型非均质性。开发了动态刚度矩阵的高频渐近展开。频域分析是通过将比例边界有限元方程集成到动态刚度中来执行的。在时域上,求解包含卷积积分的比例边界有限元方程,以解决离散时间站的单位脉冲响应问题。提出了动态刚度比例边界有限元方程的Padé级数解。随着近似阶数的增加,它会在整个频率范围内收敛。避免了对比例边界有限元方程进行数值积分的计算量大的任务。利用比例边界有限元方程中系数矩阵的稀疏性可显着减少解决大型问题的计算机时间和内存需求。此外,通过采用具有节点正交的auss-Lobatto-Legendre形状函数来获得集总系数矩阵,从而避免了确定渐近展开时的特征值问题。刚度矩阵被开发出来。获得了具有对称和频率独立系数矩阵的标准结构动力学中出现的运动方程。该传输边界条件可以与标准有限元无缝耦合。瞬态响应通过使用标准的时间积分方案进行评估。绕开了评估卷积积分的昂贵任务。本文的研究进展可应用于工程和科学的其他学科,以分析无边界介质中的标量波和矢量波。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号