首页> 外文OA文献 >Development of the scaled boundary finite element method for dynamic soil-structure interaction analysis in the time domain
【2h】

Development of the scaled boundary finite element method for dynamic soil-structure interaction analysis in the time domain

机译:时域动力土-结构相互作用分析的标度边界有限元方法开发

摘要

This thesis presents the development of the displacement-unit-impulse-response-based modelling of unbounded domains for the numerical simulation of dynamic soil-structure interaction (SSI) problems in the time domain. Wave propagation in a 2D half-plane, 2D semi-infinite layers with constant depth and 3D half-space are studied where material anisotropy is also considered. Typical dynamic SSI applications include foundation-soil interaction, road-soil systems subject to traffic load, earthquake analysis, etc. The theoretical framework of this research is based on extending the scaled boundary finite element method (SBFEM), which is a semi-analytical technique. The soil-structure interaction relationship formulated in the thesis is based on the displacement unit-impulse response matrix. An accurate and efficient method for calculating the displacement unit-impulse response matrix is proposed. The convolution integral representing the interaction force-displacement relationship can be truncated due to the decaying behaviour of the displacement unit-impulse response matrix, which leads to a significant reduction of the computational effort. Meanwhile, a reliable viscous damping model is also proposed for the 2D layered case.For large-scale wave propagation problems in 3D half-space, the computational effort is reduced in two ways: (1) the unbounded domain is divided into multiple subdomains, in which the interaction force-displacement relationship is evaluated separately; (2) based on the piece-wise linear approximation of the displacement unit-impulse response matrix, a recursive formulation for calculating the interaction displacement-force relationship is proposed.For wave propagation problems in 2D semi-infinite layers, the computational effort is reduced further by performing a trigonometric interpolation of the truncated displacement unit-impulse response matrix. Therefore, the kernel in the convolution integral is substituted by a series of sine and cosine functions, which facilitate the use of an efficient recursive algorithm. The proposed techniques are applied to wave propagation problems in 2D unbounded domains with topological irregularities or multiple material interfaces. A quadtree meshing technique based on the scaled boundary finite element method is used to model the near field in an efficient and automatic way. The proposed displacement-unit-impulse-response-based formulation of the far field can be coupled seamlessly with the quadtree mesh of the near field.
机译:本文为时域动力土-结构相互作用(SSI)问题的数值模拟提供了基于位移-单元-冲激-响应的无界域建模方法的发展。研究了在具有恒定深度和3D半空间的2D半平面,2D半无限层中的波传播,其中还考虑了材料各向异性。典型的动态SSI应用包括地基-土壤相互作用,交通荷载作用下的道路-土壤系统,地震分析等。本研究的理论框架是基于扩展的半边界标度边界有限元方法(SBFEM)。技术。本文建立的土-结构相互作用关系基于位移单元-冲激响应矩阵。提出了一种计算位移单位冲激响应矩阵的准确有效的方法。由于位移单元-脉冲响应矩阵的衰减行为,表示相互作用力-位移关系的卷积积分可以被截断,从而大大减少了计算量。同时,还针对二维分层情况提出了一种可靠的粘性阻尼模型。对于3D半空间中的大规模波传播问题,计算工作量减少了两种方式:(1)将无界域划分为多个子域;其中相互作用力-位移关系被分别评估; (2)基于位移单元-脉冲响应矩阵的分段线性逼近,提出了一种计算相互作用位移-力关系的递归公式,对于二维半无限层中的波传播问题,减少了计算量进一步通过对截断的位移单位-脉冲响应矩阵进行三角插值。因此,卷积积分中的内核由一系列正弦和余弦函数代替,这有助于使用高效的递归算法。所提出的技术被应用于具有拓扑不规则性或多个材料界面的二维无界域中的波传播问题。利用基于比例边界有限元方法的四叉树网格划分技术,以一种高效,自动的方式对近场进行建模。提出的基于位移单位冲激响应的远场公式可以与近场的四叉树网格无缝耦合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号