首页> 外文OA文献 >Leaky Buffer: A Novel Abstraction for Relieving Memory Pressure from Cluster Data Processing Frameworks
【2h】

Leaky Buffer: A Novel Abstraction for Relieving Memory Pressure from Cluster Data Processing Frameworks

机译:泄漏缓冲区:从群集数据处理框架中减轻内存压力的新颖抽象

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The shift to the in-memory data processing paradigm has had a major influence on the development of cluster data processing frameworks. Numerous frameworks from the industry, open source community and academia are adopting the in-memory paradigm to achieve functionalities and performance breakthroughs. However, despite the advantages of these in-memory frameworks, in practice they are susceptible to memory-pressure related performance collapse and failures. The contributions of this thesis are two-fold. Firstly, we conduct a detailed diagnosis of the memory pressure problem and identify three preconditions for the performance collapse. These preconditions not only explain the problem but also shed light on the possible solution strategies. Secondly, we propose a novel programming abstraction called the leaky buffer that eliminates one of the preconditions, thereby addressing the underlying problem. We have implemented the leaky buffer abstraction in Spark for two distinct use cases. Experiments on a range of memory intensive aggregation operations show that the leaky buffer abstraction can drastically reduce the occurrence of memory-related failures, improve performance by up to 507% and reduce memory usage by up to 87.5%.
机译:向内存中数据处理范例的转变对集群数据处理框架的开发产生了重大影响。来自行业,开放源代码社区和学术界的众多框架正在采用内存范式来实现功能和性能突破。但是,尽管这些内存框架具有优势,但实际上它们很容易受到与内存压力相关的性能崩溃和故障的影响。本论文的贡献有两个方面。首先,我们对内存压力问题进行了详细的诊断,并确定了性能崩溃的三个前提。这些先决条件不仅可以解释问题,而且可以阐明可能的解决方案。其次,我们提出了一种称为泄漏缓冲区的新颖编程抽象,它消除了先决条件之一,从而解决了潜在的问题。我们已经针对两个不同的用例在Spark中实现了泄漏缓冲区抽象。在一系列内存密集型聚合操作上的实验表明,泄漏缓冲区抽象可以大大减少与内存相关的故障的发生,将性能提高多达507%,并将内存使用率降低多达87.5%。

著录项

  • 作者

    Liu, Zhaolei;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号